Skip to main content
Log in

Toward self-organizing low-dimensional organic–inorganic hybrid perovskites: Machine learning-driven co-navigation of chemical and compositional spaces

  • Review Article
  • Published:
MRS Bulletin Aims and scope Submit manuscript

Abstract

Low-dimensional hybrid perovskites combine the richness of physical functionalities of inorganic materials and complexity and stimulus responsiveness of organic molecules in a single bulk dynamic material. The unique aspect of these materials is the thermodynamic (meta) stability, allowing for self-organized formation of complex large-period structures. Combined with the ease of fabrication, these materials not only have extensively demonstrated state-of-the-art high-performance optoelectronics, but also offer the pathway toward versatile applications, including sensors, electronic, and neuromorphic devices as well as their cost-effective mass production. However, discovery and optimization of this material require joint optimization of the composition of the inorganic components and selection of the molecular moieties, to harness the phase formation and self-assembly processes on the material level, and extend it to micro- and macroscale functional devices. Here, we discuss the potential of machine learning-driven automated experiments to accelerate the discovery of these materials, optimize the processing pathways, and transition from the lab-level to the product-level manufacturing.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3

Similar content being viewed by others

Data availability

The data sets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.

References

  1. J.H. Im, C.R. Lee, J.W. Lee, S.W. Park, N.G. Park, Nanoscale 3, 4088 (2011)

    Article  CAS  Google Scholar 

  2. H. Min, D.Y. Lee, J. Kim, G. Kim, K.S. Lee, J. Kim, M.J. Paik, Y.K. Kim, K.S. Kim, M.G. Kim, T.J. Shin, S. Il Seok, Nature 598(7881), 444 (2021)

    Article  CAS  Google Scholar 

  3. J.J. Yoo, G. Seo, M.R. Chua, T.G. Park, Y. Lu, F. Rotermund, Y.K. Kim, C.S. Moon, N.J. Jeon, J.P. Correa-Baena, V. Bulovic, S.S. Shin, M.G. Bawendi, J. Seo, Nature 590(7847), 587 (2021)

    Article  CAS  Google Scholar 

  4. A. Fakharuddin, M.K. Gangishetty, M. Abdi-Jalebi, S.H. Chin, A.R.M. Yusoff, D.N. Congreve, W. Tress, F. Deschler, M. Vasilopoulou, H.J. Bolink, Nat. Electron. 5, 203 (2022)

    Article  CAS  Google Scholar 

  5. R.A. John, N. Shah, S.K. Vishwanath, S.E. Ng, B. Febriansyah, M. Jagadeeswararao, C.H. Chang, A. Basu, N. Mathews, Nat. Commun. 12, 3681 (2021)

    Article  CAS  Google Scholar 

  6. J. Yao, Q. Pan, Z.J. Feng, Y.A. Xiong, T.T. Sha, H.R. Ji, Z.X. Gu, Y.M. You, Appl. Mater. 9(4), 040901 (2021)

    Article  CAS  Google Scholar 

  7. H.-T. Zhang, T.J. Park, I.A. Zaluzhnyy, Q. Wang, S.N. Wadekar, S. Manna, R. Andrawis, P.O. Sprau, Y.F. Sun, Z. Zhang, C.Z. Huang, H. Zhou, Z. Zhang, B. Narayanan, G. Srinivasan, N. Hua, E. Nazaretski, X.J. Huang, H.F. Yan, M.Y. Ge, Y.S. Chu, M.J. Cherukara, M.V. Holt, M. Krishnamurthy, O.G. Shpyrko, S.K.R.S. Sankaranarayanan, A. Frano, K. Roy, S. Ramanathan, Nat. Commun. 11, 2245 (2020). https://doi.org/10.1038/s41467-020-16105-y

    Article  Google Scholar 

  8. B.G.H.M. Groeneveld, M.A. Loi, Appl. Phys. Lett. 117(22), 221903 (2020)

    Article  CAS  Google Scholar 

  9. F. Zhang, H. Lu, J. Tong, J.J. Berry, M.C. Beard, K. Zhu, Energy Environ. Sci. 13(4), 1154 (2020)

    Article  CAS  Google Scholar 

  10. J.C. Blancon, J. Even, C.C. Stoumpos, M.G. Kanatzidis, A.D. Mohite, Nat. Nanotechnol. 15(12), 969 (2020)

    Article  CAS  Google Scholar 

  11. F. Jahanbakhshi, M. Mladenović, M. Dankl, A. Boziki, P. Ahlawat, U. Rothlisberger, Helv. Chim. Acta 104(4), e2000232 (2021)

    Article  CAS  Google Scholar 

  12. F. Zhang, S.Y. Park, C. Yao, H. Lu, S.P. Dunfield, C. Xiao, S. Ulicna, X. Zhao, L. Du Hill, X. Chen, X. Wang, L.E. Mundt, K.H. Stone, L.T. Schelhas, G. Teeter, S. Parkin, E.L. Ratcliff, Y.L. Loo, J.J. Berry, M.C. Beard, Y. Yan, B.W. Larson, K. Zhu, Science 375(6576), 71 (2022)

    Article  CAS  Google Scholar 

  13. C.M.M. Soe, G.P. Nagabhushana, R. Shivaramaiah, H.H. Tsai, W.Y. Nie, J.C. Blancon, F. Melkonyan, D.H. Cao, B. Traore, L. Pedesseau, M. Kepenekian, C. Katan, J. Even, T.J. Marks, A. Navrotsky, A.D. Mohite, C.C. Stoumpos, M.G. Kanatzidis, Proc. Natl. Acad. Sci. U.S.A. 116(1), 58 (2019)

    Article  Google Scholar 

  14. X.T. Li, J.M. Hoffman, M.G. Kanatzidis, Chem. Rev. 121(4), 2230 (2021)

    Article  CAS  Google Scholar 

  15. T.T. Li, W. Guo, L. Ma, W.S. Li, Z.H. Yu, Z. Han, S. Gao, L. Liu, D.X. Fan, Z.X. Wang, Y. Yang, W.Y. Lin, Z.Z. Luo, X.Q. Chen, N.X. Dai, X.C. Tu, D.F. Pan, Y.G. Yao, P. Wang, Y.F. Nie, J.L. Wang, Y. Shi, X.R. Wang, Nat. Nanotechnol. 16(11), 1201 (2021)

    Article  CAS  Google Scholar 

  16. H.A. Li, Y. Li, A. Aljarb, Y.M. Shi, L.J. Li, Chem. Rev. 118(13), 6134 (2018)

    Article  CAS  Google Scholar 

  17. A.K. Geim, K.S. Novoselov, Nat. Mater. 6(3), 183 (2007)

    Article  CAS  Google Scholar 

  18. L.L. Mao, C.C. Stoumpos, M.G. Kanatzidis, J. Am. Chem. Soc. 141(3), 1171 (2019)

    Article  CAS  Google Scholar 

  19. G.B. Wu, T.H. Yang, X. Li, N. Ahmad, X.N. Zhang, S.L. Yue, J. Zhou, Y.X. Li, H. Wang, X.H. Shi, S.Z. Liu, K. Zhao, H.Q. Zhou, Y. Zhang, Matter 4(2), 582 (2021)

    Article  CAS  Google Scholar 

  20. J. Hu, I.W.H. Oswald, S.J. Stuard, M.M. Nahid, N.H. Zhou, O.F. Williams, Z.K. Guo, L. Yan, H.M. Hu, Z. Chen, X. Xiao, Y. Lin, Z.B. Yang, J.S. Huang, A.M. Moran, H. Ade, J.R. Neilson, W. You, Nat. Commun. 10(1), 1276 (2019)

    Article  Google Scholar 

  21. X.M. Zhao, M.L. Ball, A. Kakekhani, T.R. Liu, A.M. Rappe, Y.-L. Loo, Nat. Commun. 13, 3970 (2022). https://doi.org/10.1038/s41467-022-31567-y

    Article  CAS  Google Scholar 

  22. G. Raino, M.A. Becker, M.I. Bodnarchuk, R.F. Mahrt, M.V. Kovalenko, T. Stoferle, Nature 563(7733), 671 (2018)

    Article  CAS  Google Scholar 

  23. K. Higgins, S.M. Valleti, M. Ziatdinov, S.V. Kalinin, M. Ahmadi, ACS Energy Lett. 5(11), 3426 (2020)

    Article  CAS  Google Scholar 

  24. K. Higgins, M. Ziatdinov, S.V. Kalinin, M. Ahmadi, J. Am. Chem. Soc. 143(47), 19945 (2021)

    Article  CAS  Google Scholar 

  25. H. Anwar, A. Johnston, S. Mahesh, K. Singh, Z.B. Wang, D.A. Kuntz, I. Tamblyn, O. Voznyy, G.G. Prive, E.H. Sargent, ACS Cent. Sci. 8(5), 571 (2022)

    Article  CAS  Google Scholar 

  26. S. Sun, N.T.P. Hartono, Z.D. Ren, F. Oviedo, A.M. Buscemi, M. Layurova, D.X. Chen, T. Ogunfunmi, J. Thapa, S. Ramasamy, C. Settens, B.L. DeCost, A.G. Kusne, Z. Liu, S.I.P. Tian, I.M. Peters, J.P. Correa-Baena, T. Buonassisi, Joule 3(6), 1437 (2019)

    Article  CAS  Google Scholar 

  27. W. Kohn, L.J. Sham, Phys. Rev. 140(4a), 1133 (1965)

    Article  Google Scholar 

  28. S. Curtarolo, D. Morgan, G. Ceder, Calphad 29(3), 163 (2005)

    Article  CAS  Google Scholar 

  29. J.W. Sun, A. Ruzsinszky, J.P. Perdew, Phys. Rev. Lett. 115, 036402 (2015). https://doi.org/10.1103/PhysRevLett.115.036402

    Article  Google Scholar 

  30. D.A. Kitchaev, H.W. Peng, Y. Liu, J.W. Sun, J.P. Perdew, G. Ceder, Phys. Rev. B 93, 045132 (2016). https://doi.org/10.1103/PhysRevB.93.045132

    Article  CAS  Google Scholar 

  31. L. Ward, A. Agrawal, A. Choudhary, C. Wolverton, NPJ Comput. Mater. 2, 16028 (2016). https://doi.org/10.1038/npjcompumats.2016.28

    Article  Google Scholar 

  32. R.E.A. Goodall, A.A. Lee, Nat. Commun. 11, 6280 (2020). https://doi.org/10.1038/s41467-020-19964-7

    Article  Google Scholar 

  33. T. Xie, J.C. Grossman, Phys. Rev. Lett. 120, 145301 (2018). https://doi.org/10.1103/PhysRevLett.120.145301

    Article  CAS  Google Scholar 

  34. C. Chen, W.K. Ye, Y.X. Zuo, C. Zheng, S.P. Ong, Chem. Mater. 31(9), 3564 (2019)

    Article  CAS  Google Scholar 

  35. C.J. Bartel, A. Trewartha, Q. Wang, A. Dunn, A. Jain, G. Ceder, NPJ Comput. Mater. 6, 97 (2020). https://doi.org/10.1038/s41524-020-00362-y

    Article  Google Scholar 

  36. J. Behler, M. Parrinello, Phys. Rev. Lett. 98(14), 146401 (2007)

    Article  Google Scholar 

  37. E.D. Cubuk, B.D. Malone, B. Onat, A. Waterland, E. Kaxiras, J. Chem. Phys. 147(2), 3 (2017)

    Article  Google Scholar 

  38. B. Onat, E.D. Cubuk, B.D. Malone, E. Kaxiras, Phys. Rev. B 97(9), 094106 (2018)

    Article  CAS  Google Scholar 

  39. G. Cheon, L. Yang, K. McCloskey, E.J. Reed, E.D. Cubuk, Crystal structure search with random relaxations using graph networks (2020), Preprint, https://arXiv:2012.02920v2

  40. C.J. Pickard, R.J. Needs, J. Phys. Condens. Matter 23(5), 053201 (2011)

    Article  Google Scholar 

  41. A. Merchant, L. Metz, S.S. Schoenholz, E.D. Cubuk, “Learn2Hop: Learned Optimization on Rough Landscapes with Applications to Atomic Structural Optimization,” in Proceedings of the 38th International Conference on Machine Learning, vol. 139 (2021), pp. 7643–7653

  42. C.J. Court, B. Yildirim, A. Jain, J.M. Cole, J. Chem. Inf. Model 60(10), 4518 (2020)

    Article  CAS  Google Scholar 

  43. T. Xie, X. Fu, O.E. Ganea, R. Barzilay, T. Jaakkola, Crystal diffusion variational autoencoder for periodic material generation (2021), Preprint, https://arXiV.2110.06197

  44. J.P. Perdew, Int. J. Quantum Chem. 28, 497 (1985)

    Article  Google Scholar 

  45. J. Gilmer, S.S. Schoenholz, P.F. Riley, O. Vinyals, G.E. Dahl, “Neural Message Passing for Quantum Chemistry,” in Proceedings of the 34th International Conference on Machine Learning, vol. 709 (2017), pp. 1263–1282

  46. L. Chanussot, A. Das, S. Goyal, T. Lavril, M. Shuaibi, M. Riviere, K. Tran, J. Heras-Domingo, C. Ho, W. Hu, A. Palizhati, A. Sriram, B. Wood, J. Yoon, D. Parikh, C.L. Zitnick, Z. Ulissi, ACS Catal. 11, 6059 (2021)

    Article  CAS  Google Scholar 

  47. K. Antami, F. Bateni, M. Ramezani, C.E. Hauke, F.N. Castellano, M. Abolhasani, Adv. Funct. Mater. 32, 2108687 (2022)

    Article  CAS  Google Scholar 

  48. J. Zhang, J. Wu, S. Langner, B. Zhao, Z. Xie, J.A. Hauch, H.A. Afify, A. Barabash, J. Luo, M. Sytnyk, W. Meng, K. Zhang, C. Liu, A. Osvet, N. Li, M. Halik, W. Heiss, Y. Zhao, C.J. Brabec, Adv. Funct. Mater. 32, 2207101 (2022)

    Article  CAS  Google Scholar 

  49. S. Moradi, S. Kundu, M. Rezazadeh, V. Yeddu, O. Voznyy, M.I. Saidaminov, Commun. Mater. 3, 13 (2022)

    Article  CAS  Google Scholar 

  50. M. Ziatdinov, A. Ghosh, S.V. Kalinin, Mach. Learn. Sci. Technol. 3, 015003 (2022)

    Article  Google Scholar 

  51. M.A. Ziatdinov, Y. Liu, A.N. Morozovska, E.A. Eliseev, X. Zhang, I. Takeuchi, S.V. Kalinin,  Adv. Mater. 34(20), 2201345 (2022)

    Article  CAS  Google Scholar 

  52. R.R. Griffiths, L. Klarner, A. Ravuri, S.T. Truong, B. Rankovic, Y. Du, A.R. Jamasb, J. Schwartz, A. Tripp, G. Kell, A. Bourached, A. Chan, J. Moss, C. Guo, A. Lee, P. Schwaller, J. Tang, “GAUCHE: A library for Gaussian processes and Bayesian optimisation in chemistry,” presented at the ICML 2022 Workshop on Adaptive Experimental Design and Active Learning in the Real World (ReALML 2022), Baltimore, July 23, 2022

    Google Scholar 

  53. J.Y. Kim, J.W. Lee, H.S. Jung, H. Shin, N.G. Park, Chem. Rev. 120(15), 7867 (2020)

    Article  CAS  Google Scholar 

  54. Y. Li, Y. Li, X. Zhou, “Flexible Optoelectronic Devices Based on Hybrid Perovskites,” in Perovskite Materials and Devices, vol. 1 (Wiley, 2022), chap. 13, p. 379

    Chapter  Google Scholar 

  55. I. Coropceanu, E.M. Janke, J. Portner, D. Haubold, T.D. Nguyen, A. Das, C.P.N. Tanner, J.K. Utterback, S.W. Teitelbaum, M.H. Hudson, N.A. Sarma, A.M. Hinkle, C.J. Tassone, A. Eychmuller, D.T. Limmer, M.O. de la Cruz, N.S. Ginsberg, D.V. Talapin, Science 375(6587), 1422 (2022)

    Article  CAS  Google Scholar 

Download references

Acknowledgments

J.Y. and M.A. acknowledge support from the National Science Foundation (NSF), Award Number No. 2043205 and Alfred P. Sloan Foundation, Award No. FG-2022-18275. All authors acknowledge support from the Center for Nanophase Materials Sciences (CNMS) user facility, which is a US Department of Energy Office of Science User Facility, Project No. CNMS2021-B-00922.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mahshid Ahmadi.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, J., Kalinin, S.V., Cubuk, E.D. et al. Toward self-organizing low-dimensional organic–inorganic hybrid perovskites: Machine learning-driven co-navigation of chemical and compositional spaces. MRS Bulletin 48, 164–172 (2023). https://doi.org/10.1557/s43577-023-00490-y

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/s43577-023-00490-y

Keywords

Navigation