Skip to main content

Single-Molecule Fluorescence Spectroscopy of Intrinsically Disordered Proteins

  • Chapter
  • First Online:
Fluorescence Spectroscopy and Microscopy in Biology

Part of the book series: Springer Series on Fluorescence ((SS FLUOR,volume 20))

  • 684 Accesses

Abstract

The past two decades have seen a substantial leap forward in our understanding of intrinsically disordered proteins, in terms of both thermodynamics and dynamics, but also in terms of structural ensembles. From understanding the principles and biological importance of their solvent pliability up to characterizing their dynamics including an identification of the molecular origins of internal friction, single-molecule FRET experiments have been an important driver of this progress. By now, the methods and analysis tools in single-molecule FRET have grown to an extensive toolbox that allows a straightforward comparison of experiments with analytical theories and results of molecular simulations. This chapter summarizes the technologies behind single-molecule FRET experiments and molecular simulations together with the key findings on intrinsically disordered proteins.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 299.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 379.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 379.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Here, δ indicates the Dirac delta function.

  2. 2.

    De Gennes derived his model for the radius of gyration (rG) of the polymer. Since the distribution of radii of gyration for a Gaussian chain is not known in closed analytic form, he used the approximation P(α) ∝ α3 exp (−3α2/2) where α = rG/RG, ideal. Notably, compared to donor–acceptor distances measured with smFRET, the radius of gyration is by far the better quantity to construct a mean-field theory due to its direct link to the monomer-density of a chain. The long-known fact has more recently gained renewed attention in the so-called FRET-SAXS controversy [see Refs. 22 and 77].

  3. 3.

    Here, photons from each color are randomly distributed to two detectors.

  4. 4.

    For example, after FRET from donor to acceptor, the acceptor is in the excited state. If the donor is re-exited before the acceptor relaxes to the ground state, both dyes will be in the excited state.

  5. 5.

    Importantly, the intrinsic diffusion of donor and acceptor relative to each other should not be confused with the translational diffusion of the whole molecule.

References

  1. van der Lee R et al (2014) Classification of intrinsically disordered regions and proteins. Chem Rev 114:6589–6631

    PubMed  PubMed Central  Google Scholar 

  2. Uversky VN, Dunker AK (2008) Biochemistry. Controlled chaos. Science 322(5906):1340–1341

    CAS  PubMed  Google Scholar 

  3. Wright PE, Dyson HJ (2014) Intrinsically disordered proteins in cellular signalling and regulation. Nat Rev Mol Cell Biol 16(1):18–29

    Google Scholar 

  4. Ferreon ACM, Ferreon JC, Wright PE, Deniz AA (2013) Modulation of allostery by protein intrinsic disorder. Nature 498(7454):390–394

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Gsponer J, Futschik ME, Teichmann SA (2008) Tight regulation of unstructured proteins: from transcript synthesis to protein degradation. Science 322:1365–1368

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Schuler B et al (2020) Binding without folding - the biomolecular function of disordered polyelectrolyte complexes. Curr Opin Struct Biol 60:66–76

    CAS  PubMed  Google Scholar 

  7. Borgia A et al (2018) Extreme disorder in an ultrahigh-affinity protein complex. Nature 555(7694):61–66

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Holmstrom ED, Liu Z, Nettels D, Best RB, Schuler B (2019) Disordered RNA chaperones can enhance nucleic acid folding via local charge screening. Nat Comms 10(1):2453–2411

    Google Scholar 

  9. Mittag T et al (2008) Dynamic equilibrium engagement of a polyvalent ligand with a single-site receptor. Proc Natl Acad Sci U S A 105(46):17772–17777

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Hendus-Altenburger R et al (2016) The human Na + /H + exchanger 1 is a membrane scaffold protein for extracellular signal-regulated kinase 2. BMC Biol 14(1):1–17

    Google Scholar 

  11. Milles S et al (2015) Plasticity of an ultrafast interaction between nucleoporins and nuclear transport receptors. Cell 163(3):734–745

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Wiggers F et al (2021) Diffusion of a disordered protein on its folded ligand. Proc Natl Acad Sci U S A 118(37):e2106690118

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Deniz AA et al (2000) Single-molecule protein folding: diffusion fluorescence resonance energy transfer studies of the denaturation of chymotrypsin inhibitor 2. Proc Natl Acad Sci U S A 97(10):5179–5184

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Schuler B, Lipman E, Eaton W (2002) Probing the free-energy surface for protein folding with single-molecule fluorescence spectroscopy. Nature 419(6908):743–747

    CAS  PubMed  Google Scholar 

  15. Kuzmenkina E, Heyes C, Nienhaus G (2005) Single-molecule Forster resonance energy transfer study of protein dynamics under denaturing conditions. Proc Natl Acad Sci U S A 102(43):15471–15476

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Sherman E, Haran G (2006) Coil-globule transition in the denatured state of a small protein. Proc Natl Acad Sci U S A 103(31):11539–11543

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Merchant K, Best R, Louis J, Gopich I, Eaton W (2007) Characterizing the unfolded states of proteins using single-molecule FRET spectroscopy and molecular simulations. Proc Natl Acad Sci U S A 104(5):1528–1533

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Hofmann H, Golbik R, Ott M, Hübner C, Ulbrich-Hofmann R (2008) Coulomb forces control the density of the collapsed unfolded state of barstar. J Mol Biol 376(2):597–605

    CAS  PubMed  Google Scholar 

  19. Müller-Späth S et al (2010) Charge interactions can dominate the dimensions of intrinsically disordered proteins. Proc Natl Acad Sci U S A 107:14609–14614

    PubMed  PubMed Central  Google Scholar 

  20. Hofmann H et al (2012) Polymer scaling laws of unfolded and intrinsically disordered proteins quantified with single-molecule spectroscopy. Proc Natl Acad Sci U S A 109(40):16155–16160

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Wuttke R et al (2014) Temperature-dependent solvation modulates the dimensions of disordered proteins. Proc Natl Acad Sci U S A 111(14):5213–5218

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Borgia A et al (2016) Consistent view of polypeptide chain expansion in chemical denaturants from multiple experimental methods. J Am Chem Soc 138:11714

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Schuler B, Soranno A, Hofmann H, Nettels D (2016) Single-molecule FRET spectroscopy and the polymer physics of unfolded and intrinsically disordered proteins. Annu Rev Biophys 45:207–231

    CAS  PubMed  Google Scholar 

  24. Grossman-Haham I, Rosenblum G, Namani T, Hofmann H (2018) Slow domain reconfiguration causes power-law kinetics in a two-state enzyme. Proc Natl Acad Sci U S A 115(3):513–518

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Vancraenenbroeck R, Hofmann H (2018) Occupancies in the DNA-binding pathways of intrinsically disordered helix-loop-helix leucine-zipper proteins. J Phys Chem B 122:11460–11467

    CAS  PubMed  Google Scholar 

  26. Vancraenenbroeck R, Harel YS, Zheng W, Hofmann H (2019) Polymer effects modulate binding affinities in disordered proteins. Proc Natl Acad Sci U S A 116(39):19506–19512

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Fuertes G et al (2017) Decoupling of size and shape fluctuations in heteropolymeric sequences reconciles discrepancies in SAXS vs. FRET measurements. Proc Natl Acad Sci U S A 114(31):E6342–E6351

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Mukhopadhyay S, Krishnan R, Lemke E, Lindquist S, Deniz A (2007) A natively unfolded yeast prion monomer adopts an ensemble of collapsed and rapidly fluctuating structures. Proc Natl Acad Sci U S A 104(8):2649–2654

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Aznauryan M et al (2016) Comprehensive structural and dynamical view of an unfolded protein from the combination of single-molecule FRET, NMR, and SAXS. Proc Natl Acad Sci U S A 113(37):E5389–E5398

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Hoffmann A et al (2007) Mapping protein collapse with single-molecule fluorescence and kinetic synchrotron radiation circular dichroism spectroscopy. Proc Natl Acad Sci U S A 104(1):105–110

    CAS  PubMed  Google Scholar 

  31. Soranno A et al (2014) Single-molecule spectroscopy reveals polymer effects of disordered proteins in crowded environments. Proc Natl Acad Sci U S A 111(13):4874–4879

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Nettels D et al (2009) Single-molecule spectroscopy of the temperature-induced collapse of unfolded proteins. Proc Natl Acad Sci U S A 106:20740–20745

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Soranno A et al (2012) Quantifying internal friction in unfolded and intrinsically disordered proteins with single molecule spectroscopy. Proc Natl Acad Sci U S A 109:17800–17806

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Nettels D, Gopich I, Hoffmann A, Schuler B (2007) Ultrafast dynamics of protein collapse from single-molecule photon statistics. Proc Natl Acad Sci U S A 104(8):2655–2660

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Zosel F, Haenni D, Soranno A, Nettels D, Schuler B (2017) Combining short- and long-range fluorescence reporters with simulations to explore the intramolecular dynamics of an intrinsically disordered protein. J Chem Phys 147:152708

    PubMed  Google Scholar 

  36. Soranno A, Zosel F, Hofmann H (2018) Internal friction in an intrinsically disordered protein-comparing Rouse-like models with experiments. J Chem Phys 148(12):123326

    PubMed  Google Scholar 

  37. Soranno A et al (2017) Integrated view of internal friction in unfolded proteins from single-molecule FRET, contact quenching, theory, and simulations. Proc Natl Acad Sci U S A 114:E1833–E1839

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Wahl M et al (2008) Scalable time-correlated photon counting system with multiple independent input channels. Rev Sci Instrum 79(12):123113

    PubMed  Google Scholar 

  39. Wahl M, Rahn H-J, Gregor I, Erdmann R, Enderlein J (2007) Dead-time optimized time-correlated photon counting instrument with synchronized, independent timing channels. Rev Sci Instrum 78(3):033106

    PubMed  Google Scholar 

  40. Dertinger T et al (2007) Two-focus fluorescence correlation spectroscopy: a new tool for accurate and absolute diffusion measurements. ChemPhysChem 8(3):433–443

    CAS  PubMed  Google Scholar 

  41. Eggeling C et al (2001) Data registration and selective single-molecule analysis using multi-parameter fluorescence detection. J Biotechnol 86(3):163–180

    CAS  PubMed  Google Scholar 

  42. Schuler B (2007) Application of single molecule Förster resonance energy transfer to protein folding. Methods Mol Biol 350:115–138

    CAS  PubMed  Google Scholar 

  43. Rosenblum G et al (2021) Allostery through DNA drives phenotype switching. Nat Commun 12(1):2967–2912

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Hellenkamp B et al (2018) Precision and accuracy of single-molecule FRET measurements-a multi-laboratory benchmark study. Nat Methods 15(9):669–676

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Kapanidis AN et al (2004) Fluorescence-aided molecule sorting: analysis of structure and interactions by alternating-laser excitation of single molecules. Proc Natl Acad Sci U S A 101(24):8936–8941

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Müller BK, Zaychikov E, Bräuchle C, Lamb DC (2005) Pulsed interleaved excitation. Biophys J 89(5):3508–3522

    PubMed  PubMed Central  Google Scholar 

  47. Kapanidis AN et al (2005) Alternating-laser excitation of single molecules. Acc Chem Res 38(7):523–533

    CAS  PubMed  Google Scholar 

  48. Laurence T, Kong X, Jäger M, Weiss S (2005) Probing structural heterogeneities and fluctuations of nucleic acids and denatured proteins. Proc Natl Acad Sci U S A 102(48):17348–17353

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Gopich I, Szabo A (2005) Theory of photon statistics in single-molecule Förster resonance energy transfer. J Chem Phys 122(1):14707

    PubMed  Google Scholar 

  50. Lipman E, Schuler B, Bakajin O, Eaton W (2003) Single-molecule measurement of protein folding kinetics. Science 301(5637):1233–1235

    CAS  PubMed  Google Scholar 

  51. Zheng W et al (2018) Inferring properties of disordered chains from FRET transfer efficiencies. J Chem Phys 148(12):123329

    PubMed  PubMed Central  Google Scholar 

  52. Fisher ME (1966) Shape of a self-avoiding walk or polymer chain. J Chem Phys 44(616)

    Google Scholar 

  53. Des Cloizeaux J (1974) Lagrangian theory for a self-avoiding random chain. Phys Rev A 10(5):1665–1669

    Google Scholar 

  54. O'Brien EP, Morrison G, Brooks BR, Thirumalai D (2009) How accurate are polymer models in the analysis of Förster resonance energy transfer experiments on proteins? J Chem Phys 130(12):124903

    PubMed  PubMed Central  Google Scholar 

  55. Gopich IV, Szabo A (2012) Theory of the energy transfer efficiency and fluorescence lifetime distribution in single-molecule FRET. Proc Natl Acad Sci U S A 109(20):7747–7752

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Kalinin S, Valeri A, Antonik M, Felekyan S, Seidel CAM (2010) Detection of structural dynamics by FRET: a photon distribution and fluorescence lifetime analysis of systems with multiple states. J Phys Chem B 114:7983–7995

    CAS  PubMed  Google Scholar 

  57. Dale RE, Eisinger J, Blumberg B (1979) Orientational freedom of molecular probes. Biophys J 26:161–193

    CAS  PubMed  PubMed Central  Google Scholar 

  58. Schuler B, Lipman EA, Steinbach PJ, Kumke M, Eaton WA (2005) Polyproline and the “spectroscopic ruler” revisited with single-molecule fluorescence. Proc Natl Acad Sci U S A 102(8):2754–2759

    CAS  PubMed  PubMed Central  Google Scholar 

  59. Hillger F et al (2008) Probing protein-chaperone interactions with single-molecule fluorescence spectroscopy. Angew Chem Int Ed Engl 47(33):6184–6188

    CAS  PubMed  Google Scholar 

  60. Hofmann H et al (2010) Single-molecule spectroscopy of protein folding in a chaperonin cage. Proc Natl Acad Sci U S A 107(26):11793–11798

    CAS  PubMed  PubMed Central  Google Scholar 

  61. Sun S, Nishio I, Swislow G, Tanaka T (1980) The coil-globule transition - radius of gyration of polystyrene in cyclohexane. J Chem Phys 73(12):5971–5975

    CAS  Google Scholar 

  62. de Gennes P (1975) Collapse of a polymer chain in poor solvents. J Phys Lett 3:L55–L57

    Google Scholar 

  63. Doi M, Edwards S (1988) The theory of polymer dynamics. Oxford University Press, New York

    Google Scholar 

  64. Dua A, Vilgis TA (2005) Self-consistent variational theory for globules. EPL 71(1):49

    CAS  Google Scholar 

  65. Sanchez I (1979) Phase transition behavior of the isolated polymer chain. Macromolecules 12:980–988

    CAS  Google Scholar 

  66. Hofmann H (2016) Understanding disordered and unfolded proteins using single-molecule FRET and polymer theory. Methods Appl Fluoresc 4(4):042003

    PubMed  Google Scholar 

  67. England J, Haran G (2011) Role of solvation effects in protein denaturation: from thermodynamics to single molecules and back. Annu Rev Phys Chem 62:257–277

    CAS  PubMed  PubMed Central  Google Scholar 

  68. Nozaki Y, Tanford C (1970) The solubility of amino acids, diglycine, and triglycine in aqueous guanidine hydrochloride solutions. J Biol Chem 245(7):1648–1652

    CAS  PubMed  Google Scholar 

  69. Thirumalai D, Liu Z, O'Brien EP, Reddy G (2012) Protein folding: from theory to practice. Curr Opin Struct Biol 23:1–8

    Google Scholar 

  70. O'Brien E, Ziv G, Haran G, Brooks B, Thirumalai D (2008) Effects of denaturants and osmolytes on proteins are accurately predicted by the molecular transfer model. Proc Natl Acad Sci U S A 105:13403–13408

    CAS  PubMed  PubMed Central  Google Scholar 

  71. Ziv G, Haran G (2009) Protein folding, protein collapse, and Tanford's transfer model: lessons from single-molecule FRET. J Am Chem Soc 131(8):2942–2947

    CAS  PubMed  PubMed Central  Google Scholar 

  72. Ziv G, Thirumalai D, Haran G (2009) Collapse transition in proteins. Phys Chem Chem Phys 11(1):83–93

    CAS  PubMed  Google Scholar 

  73. Flory P (1949) The configuration of real polymer chains. J Chem Phys 17(3):303

    CAS  Google Scholar 

  74. Le Guillou JC, Zinn-Justin J (1977) Critical exponents for the n-vector model in three dimensions from field theory. Phys Rev Lett 39:95–98

    Google Scholar 

  75. Rubinstein M, Colby RH (2012) Polymer physics. Oxford University Press, Oxford, p 440

    Google Scholar 

  76. Kohn J et al (2004) Random-coil behavior and the dimensions of chemically unfolded proteins. Proc Natl Acad Sci U S A 101(34):12491–12496

    CAS  PubMed  PubMed Central  Google Scholar 

  77. Riback JA et al (2017) Innovative scattering analysis shows that hydrophobic disordered proteins are expanded in water. Science 358(6360):238–241

    CAS  PubMed  PubMed Central  Google Scholar 

  78. Wilkins D et al (1999) Hydrodynamic radii of native and denatured proteins measured by pulse field gradient NMR techniques. Biochemistry 38(50):16424–16431

    CAS  PubMed  Google Scholar 

  79. Grosberg A, Kuznetsov D (1992) Quantitative theory of the globule-to-coil transition 1. Link density distribution in a globule and its radius of gyration. Macromolecules 25(7):1970–1979

    CAS  Google Scholar 

  80. Crick SL, Jayaraman M, Frieden C, Wetzel R, Pappu RV (2006) Fluorescence correlation spectroscopy shows that monomeric polyglutamine molecules form collapsed structures in aqueous solutions. Proc Natl Acad Sci U S A 103(45):16764–16769

    CAS  PubMed  PubMed Central  Google Scholar 

  81. Grosberg A, Kuznetsov D (1992) Quantitative theory of the globule-to-coil transition. 2. Density-density correlation in a globule and the hydrodynamic radius of a macromolecule. Macromolecules 25:1980–1990

    CAS  Google Scholar 

  82. Uzawa T et al (2006) Time-resolved small-angle X-ray scattering investigation of the folding dynamics of heme oxygenase: implication of the scaling relationship for the submillisecond intermediates of protein folding. J Mol Biol 357(3):997–1008

    CAS  PubMed  Google Scholar 

  83. Camacho C, Thirumalai D (1993) Kinetics and thermodynamics of folding in model proteins. Proc Natl Acad Sci U S A 90:6369–6372

    CAS  PubMed  PubMed Central  Google Scholar 

  84. Mao AH, Crick SL, Vitalis A, Chicoine CL, Pappu RV (2010) Net charge per residue modulates conformational ensembles of intrinsically disordered proteins. Proc Natl Acad Sci U S A 107(18):8183–8188

    CAS  PubMed  PubMed Central  Google Scholar 

  85. Sherry KP, Das RK, Pappu RV, Barrick D (2017) Control of transcriptional activity by design of charge patterning in the intrinsically disordered RAM region of the Notch receptor. Proc Natl Acad Sci U S A 114(44):E9243–E9252

    CAS  PubMed  PubMed Central  Google Scholar 

  86. Peran I et al (2019) Unfolded states under folding conditions accommodate sequence-specific conformational preferences with random coil-like dimensions. Proc Natl Acad Sci U S A 116(25):12301–12310

    CAS  PubMed  PubMed Central  Google Scholar 

  87. Martin EW et al (2020) Valence and patterning of aromatic residues determine the phase behavior of prion-like domains. Science 367(6478):694–699

    CAS  PubMed  PubMed Central  Google Scholar 

  88. Holm C et al (2004) Polyelectrolyte theory. Springer, Berlin

    Google Scholar 

  89. Dobrynin AV, Rubinstein M (2005) Theory of polyelectrolytes in solutions and at surfaces. Prog Polym Sci 30(11):1049–1118

    CAS  Google Scholar 

  90. Higgs PG, Joanny J-F (1991) Theory of polyampholyte solutions. J Chem Phys 94(2):1543–1554

    CAS  Google Scholar 

  91. Ha DT (1992) Conformations of a polyelectrolyte chain. Phys Rev A 46(6):R3012–R3015

    CAS  PubMed  Google Scholar 

  92. Kundagrami A, Muthukumar M (2010) Effective charge and Coll-Globule transition of a polyelectrolyte chain. Macromolecules 43(5):2574–2581

    CAS  PubMed  PubMed Central  Google Scholar 

  93. Bhattacharjee A, Kundu P, Dua A (2011) Self-consisten theory of structures and transitions in weak polyampholytes. Macromol Theory Simul 20:75–84

    CAS  Google Scholar 

  94. Shakhnovich EI, Gutin AM (1989) Formation of unique structure in polypeptide chains. Theoretical investigation with the aid of a replica approach. Biophys Chem 34(3):187–199

    CAS  PubMed  Google Scholar 

  95. Gomes G-NW, Namini A, Gradinaru CC (2022) Integrative conformational ensembles of Sic1 using different initial pools and optimization methods. Front Mol Biosci 9:910956

    CAS  PubMed  PubMed Central  Google Scholar 

  96. Lindorff-Larsen K, Best RB, Depristo MA, Dobson CM, Vendruscolo M (2005) Simultaneous determination of protein structure and dynamics. Nature 433:128–132

    CAS  PubMed  Google Scholar 

  97. Best RB, Zheng W, Mittal J (2014) Balanced protein-water interactions improve properties of disordered proteins and non-specific protein association. J Chem Theory Comput 10(11):5113–5124

    CAS  PubMed  PubMed Central  Google Scholar 

  98. Vitalis A, Pappu RV (2008) ABSINTH: a new continuum solvation model for simulations of polypeptides in aqueous solutions. J Comput Chem 30:673–699

    Google Scholar 

  99. Dignon GL, Zheng WW, Kim YC, Best RB, Mittal J (2018) Sequence determinants of protein phase behavior from a coarse-grained model. PLoS Comput Biol 14(1):e1005941

    PubMed  PubMed Central  Google Scholar 

  100. Robustelli P, Piana S, Shaw DE (2018) Developing a molecular dynamics force field for both folded and disordered protein states. Proc Natl Acad Sci U S A 115(21):E4758–E4766

    CAS  PubMed  PubMed Central  Google Scholar 

  101. Huang J et al (2017) CHARMM36m: an improved force field for folded and intrinsically disordered proteins. Nat Methods 14(1):71–73

    CAS  PubMed  Google Scholar 

  102. Hess B, Kutzner C, Van der Spoel D, Lindahl E (2008) GROMACS4: algorithms for highly efficient, load-balanced, and scalable molecular simulation. J Chem Theor Comput 4(3):435–447

    CAS  Google Scholar 

  103. Case DA et al (2005) The Amber biomolecular simulation programs. J Comput Chem 26(16):1668–1688

    CAS  PubMed  PubMed Central  Google Scholar 

  104. Eastman P et al (2017) OpenMM 7: rapid development of high performance algorithms for molecular dynamics. PLoS Comput Biol 13(7):e1005659

    PubMed  PubMed Central  Google Scholar 

  105. Phillips JC et al (2005) Scalable molecular dynamics with NAMD. J Comput Chem 26:1781–1802

    CAS  PubMed  PubMed Central  Google Scholar 

  106. Shaw DE et al (2007) Anton, a special-purpose machine for molecular dynamics simulation. In: ISCA'07: 34th annual international symposium on computer architecture, conference proceedings, conference proceedings – annual international symposium on computer architecture. Association for Computing Machinery, New York, pp 1–12

    Google Scholar 

  107. Robustelli P, Piana S, Shaw DE (2020) Mechanism of coupled folding-upon-binding of an intrinsically disordered protein. J Am Chem Soc 142(25):11092–11101

    CAS  PubMed  Google Scholar 

  108. Best RB, Hofmann H, Nettels D, Schuler B (2015) Quantitative interpretation of FRET experiments via molecular simulation: force field and validation. Biophys J 108:2721–2731

    CAS  PubMed  PubMed Central  Google Scholar 

  109. Das RK, Pappu RV (2013) Conformations of intrinsically disordered proteins are influenced by linear sequence distributions of oppositely charged residues. Proc Natl Acad Sci U S A 110(33):13392–13397

    CAS  PubMed  PubMed Central  Google Scholar 

  110. Zheng W et al (2016) Probing the action of chemical denaturant on an intrinsically disordered protein by simulation and experiment. J Am Chem Soc 138(36):11702–11713

    CAS  PubMed  PubMed Central  Google Scholar 

  111. Yoo TY et al (2012) Small-angle X-ray scattering and single-molecule FRET spectroscopy produce highly divergent views of the low-denaturant unfolded state. J Mol Biol 418:226–236

    CAS  PubMed  PubMed Central  Google Scholar 

  112. Zheng W, Best R (2018) An extended Guinier analysis for intrinsically disordered proteins. J Mol Biol 430:2540–2553

    CAS  PubMed  PubMed Central  Google Scholar 

  113. Witten TA, Schäfer L (1978) Two critical ratios in polymer solutions. J Phys A 11(9):1843–1854

    CAS  Google Scholar 

  114. Gomes GW et al (2020) Conformational ensembles of an intrinsically disordered protein consistent with NMR, SAXS, and single-molecule FRET. J Am Chem Soc 142(37):15697–15710

    CAS  PubMed  PubMed Central  Google Scholar 

  115. Brangwynne CP et al (2009) Germline P granules are liquid droplets that localize by controlled dissolution/condensation. Science 324(5935):1729–1732

    CAS  PubMed  Google Scholar 

  116. Dyson HJ, Wright PE (2002) Coupling of folding and binding for unstructured proteins. Curr Opin Struct Biol 12(1):54–60

    CAS  PubMed  Google Scholar 

  117. Theillet F-X et al (2014) Physicochemical properties of cells and their effects on intrinsically disordered proteins (IDPs). Chem Rev 114(13):6661–6714

    CAS  PubMed  PubMed Central  Google Scholar 

  118. Debye P, Hückel E (1923) Zur Theorie der Elektrolyte: I. Gefrierpunktserniedrigung und verwandte Erscheinungen. Phys Z 24(9):185–206

    CAS  Google Scholar 

  119. Hooper HH, Blanch HW, Prausnitz JM (1990) Configurational properties of partially ionized polyelectrolytes from Monte Carlo simulation. Macromolecules 23(22):4820–4829

    CAS  Google Scholar 

  120. English AE, Tanaka T, Edelman ER (1998) Polyampholytic hydrogel swelling transitions: limitations of the Debye−Hückel law. Macromolecules 31(6):1989–1995

    CAS  Google Scholar 

  121. Ashbaugh HS, Hatch HW (2008) Natively unfolded protein stability as a coil-to-globule transition in charge/hydropathy space. J Am Chem Soc 130(29):9536–9542

    CAS  PubMed  Google Scholar 

  122. Latham AP, Zhang B (2019) Improving coarse-grained protein force fields with small-angle X-ray scattering data. J Phys Chem B 123(5):1026–1034

    CAS  PubMed  Google Scholar 

  123. Dannenhoffer-Lafage T, Best RB (2021) A data-driven hydrophobicity scale for predicting liquid-liquid phase separation of proteins. J Phys Chem B 125(16):4046–4056

    CAS  PubMed  Google Scholar 

  124. Regy RM, Thompson J, Kim YC, Mittal J (2021) Improved coarse-grained model for studying sequence dependent phase separation of disordered proteins. Protein Sci 30(7):1371–1379

    CAS  PubMed  PubMed Central  Google Scholar 

  125. Tesei G, Schulze TK, Crehuet R, Lindorff-Larsen K (2021) Accurate model of liquid-liquid phase behavior of intrinsically disordered proteins from optimization of single-chain properties. Proc Natl Acad Sci U S A 118(44)

    Google Scholar 

  126. Plimpton S (1995) Fast parallel algorithms for short-range molecular dynamics. J Comput Phys 117(1):1–19

    CAS  Google Scholar 

  127. Anderson JA, Lorenz CD, Travesset A (2008) General purpose molecular dynamics simulations fully implemented on graphics processing units. J Comput Phys 227(10):5342–5359

    Google Scholar 

  128. Lapidus LJ, Eaton WA, Hofrichter J (2000) Measuring the rate of intramolecular contact formation in polypeptides. Proc Natl Acad Sci U S A 97(13):7220–7225

    CAS  PubMed  PubMed Central  Google Scholar 

  129. Bieri O et al (1999) The speed limit for protein folding measured by triplet-triplet energy transfer. Proc Natl Acad Sci U S A 96(17):9597–9601

    CAS  PubMed  PubMed Central  Google Scholar 

  130. Hanbury Brown R, Twiss RQ (1956) Correlation between photons in two coherent beams of light. Nature 177(4497):27–29

    Google Scholar 

  131. Borgia A et al (2012) Localizing internal friction along the reaction coordinate of protein folding by combining ensemble and single-molecule fluorescence spectroscopy. Nat Commun 3:1195

    PubMed  Google Scholar 

  132. Schuler B, Müller-Späth S, Soranno A, Nettels D (2012) Application of confocal single-molecule FRET to intrinsically disordered proteins. Methods Mol Biol 896:21–45

    CAS  PubMed  Google Scholar 

  133. Haenni D, Zosel F, Reymond L, Nettels D, Schuler B (2013) Intramolecular distances and dynamics from the combined photon statistics of single-molecule FRET and Photoinduced electron transfer. J Phys Chem B 117(42):13015–13028

    CAS  PubMed  Google Scholar 

  134. Schuler B, Hofmann H (2013) Single-molecule spectroscopy of protein folding dynamics-expanding scope and timescales. Curr Opin Struct Biol 23:1–12

    Google Scholar 

  135. Cubuk J et al (2021) The SARS-CoV-2 nucleocapsid protein is dynamic, disordered, and phase separates with RNA. Nat Commun 12(1):1936–1917

    CAS  PubMed  PubMed Central  Google Scholar 

  136. König I et al (2015) Single-molecule spectroscopy of protein conformational dynamics in live eukaryotic cells. Nat Methods 12(8):773–779

    PubMed  Google Scholar 

  137. Schuler B, König I, Soranno A, Nettels D (2021) Impact of in-cell and in-vitro crowding on the conformations and dynamics of an intrinsically disordered protein. Angew Chem Int Ed Engl 133:2

    Google Scholar 

  138. Gopich IV, Nettels D, Schuler B, Szabo A (2009) Protein dynamics from single-molecule fluorescence intensity correlation functions. J Chem Phys 131(9):095102

    PubMed  PubMed Central  Google Scholar 

  139. Gopich IV, Szabo A (2008) Theory of photon counting in single molecule spectroscopy. World Scientific Publishing Co. Pte. Ltd., Singapore

    Google Scholar 

  140. Rouse PE (1953) A theory of the linear viscoelastic properties of dilute solutions of coiling polymers. J Chem Phys 21:1272–1280

    CAS  Google Scholar 

  141. Makarov DE (2010) Spatiotemporal correlations in denatured proteins: the dependence of fluorescence resonance energy transfer (FRET)-derived protein reconfiguration times on the location of the FRET probes. J Chem Phys 132(3):035104

    PubMed  Google Scholar 

  142. de Gennes P-G (1979) Scaling concepts in polymer physics. Cornell University Press, Ithaca

    Google Scholar 

  143. Bazúa ER, Williams MC (1973) Molecular formulation of the internal viscosity in polymer dynamics, and stress symmetry. J Chem Phys 59:2858–2868

    Google Scholar 

  144. Khatri BS, McLeish TCB (2007) Rouse model with internal friction: a coarse grained framework for single biopolymer dynamics. Macromolecules 40(18):6770–6777

    CAS  Google Scholar 

  145. Kramers H (1940) Brownian motion in a field of force and the diffusion model of chemical reactions. Physica 7:284–304

    CAS  Google Scholar 

  146. Plaxco KW, Baker D (1998) Limited internal friction in the rate-limiting step of a two-state protein folding reaction. Proc Natl Acad Sci U S A 95(23):13591–13596

    CAS  PubMed  PubMed Central  Google Scholar 

  147. Jacob M, Geeves M, Holtermann G, Schmid FX (1999) Diffusional barrier crossing in a two-state protein folding reaction. Nat Struct Biol 6(10):923–926

    CAS  PubMed  Google Scholar 

  148. Ansari A, Jones CM, Henry ER, Hofrichter J, Eaton WA (1992) The role of solvent viscosity in the dynamics of protein conformational changes. Science 256(5065):1796–1798

    CAS  PubMed  Google Scholar 

  149. Pabit SA, Roder H, Hagen SJ (2004) Internal friction controls the speed of protein folding from a compact configuration. Biochemistry 43(39):12532–12538

    CAS  PubMed  Google Scholar 

  150. Hagen SJ, Qiu L, Pabit SA (2005) Diffusional limits to the speed of protein folding: fact or friction? J Phys Condens Matter 17(18):S1503–S1514

    CAS  Google Scholar 

  151. Chung HS, Eaton WA (2013) Single-molecule fluorescence probes dynamics of barrier crossing. Nature 502(7473):685–688

    CAS  PubMed  PubMed Central  Google Scholar 

  152. Frauenfelder H, Fenimore PW, Chen G, McMahon BH (2006) Protein folding is slaved to solvent motions. Proc Natl Acad Sci U S A 103(42):15469–15472

    CAS  PubMed  PubMed Central  Google Scholar 

  153. Evans DF, Tominaga T, Davis HT (1981) Tracer diffusion in polyatomic liquids. J Chem Phys 74(2):1298

    CAS  Google Scholar 

  154. Evans DF, Tominaga T, Chan C (1979) Diffusion of symmetrical and spherical solutes in protic, aprotic, and hydrocarbon solvents. J Solution Chem 8:461–478

    CAS  Google Scholar 

  155. Pollack GL, Enyeart JJ (1985) Atomic test of the stokes-Einstein law. II. Diffusion of Xe through liquid hydrocarbons. Phys Rev A 31:980–984

    CAS  Google Scholar 

  156. Hiss TG, Cussler EL (1973) Diffusion in high viscosity liquids. AIChE 19:698–703

    CAS  Google Scholar 

  157. Ellerton HD, Mulcahy DE, Dunlop PJ, Reinfelds G (1964) Mutual frictional coefficients of several amino acids in aqueous solution at 25. J Phys Chem 68(2):403–408

    CAS  Google Scholar 

  158. Harris KR (2009) The fractional Stokes-Einstein equation: application to Lennard-Jones, molecular, and ionic liquids. J Chem Phys 131(5):054503

    PubMed  Google Scholar 

  159. Zwanzig R, Harrison AK (1985) Modifications of the Stokes-Einstein formula. J Chem Phys 83(11):5861–5862

    CAS  Google Scholar 

  160. Bhattacharyya S, Bagchi B (1997) Anomalous diffusion of small particles in dense liquids. J Chem Phys 106(5):1757–1763

    CAS  Google Scholar 

  161. Grote RF, Hynes JT (1981) Reactive modes in condensed phase reactions. J Chem Phys 74:4465–4475

    CAS  Google Scholar 

  162. Grote RF, Vanderzwan G, Hynes JT (1984) Frequency-dependent friction and solution reaction-rates. J Phys Chem 88(20):4676–4684

    CAS  Google Scholar 

  163. Neuweiler H, Johnson C, Fersht A (2009) Direct observation of ultrafast folding and denatured state dynamics in single protein molecules. Proc Natl Acad Sci U S A 106(44):18569–18574

    CAS  PubMed  PubMed Central  Google Scholar 

  164. Allegra G, Ganazzoli F (1981) Configurations and dynamics of real chains 2. Internal viscosity. Macromolecules 14(4):1110–1119

    CAS  Google Scholar 

  165. Adelman SA, Freed KF (1977) Microscopic theory of polymer internal viscosity: mode coupling approximation for the Rouse model. J Chem Phys 67(4):1380

    CAS  Google Scholar 

  166. de Gennes PG (1977) Origin of internal viscosities in dilute polymer solutions. J Chem Phys 66(12):5825–5826

    Google Scholar 

  167. Echeverria I, Makarov DE, Papoian GA (2014) Concerted dihedral rotations give rise to internal friction in unfolded proteins. J Am Chem Soc 136:8708–8713

    CAS  PubMed  Google Scholar 

  168. Schulz JCF, Schmidt L, Best RB, Dzubiella J, Netz RR (2012) Peptide chain dynamics in light and heavy water: zooming in on internal friction. J Am Chem Soc 134(14):6273–6279

    CAS  PubMed  Google Scholar 

  169. de Sancho D, Sirur A, Best RB (2014) Molecular origins of internal friction effects on protein-folding rates. Nat Commun 5:4307

    PubMed  Google Scholar 

  170. Gonzalez MA, Abascal JL (2010) The shear viscosity of rigid water models. J Chem Phys 132(9):096101

    PubMed  Google Scholar 

  171. Abascal JLF, Vega C (2005) A general purpose model for the condensed phases of water: TIP4P/2005. J Chem Phys 123:234505

    CAS  PubMed  Google Scholar 

  172. Zheng W, Hofmann H, Schuler B, Best RB (2018) Origin of internal friction in disordered proteins depends on solvent quality. J Phys Chem B 122(49):11478–11487

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

H.H. thanks the Israel Science Foundation (ISF 2253/18) and the European Research Council (ERC-CoG 864578). W.Z. acknowledges the support from the National Science Foundation (MCB-2015030) and the National Institutes of Health (R35GM146814).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hagen Hofmann .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Hofmann, H., Zheng, W. (2022). Single-Molecule Fluorescence Spectroscopy of Intrinsically Disordered Proteins. In: Šachl, R., Amaro, M. (eds) Fluorescence Spectroscopy and Microscopy in Biology. Springer Series on Fluorescence, vol 20. Springer, Cham. https://doi.org/10.1007/4243_2022_38

Download citation

Publish with us

Policies and ethics