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Abstract: Molecular binding is an interaction between
molecules that results in a stable association between
those molecules. Cooperative binding occurs if the
number of binding sites of a macromolecule that are
occupied by a specific type of ligand is a nonlinear
function of this ligand’s concentration. This can be due,
for instance, to an affinity for the ligand that depends on
the amount of ligand bound. Cooperativity can be
positive (supralinear) or negative (infralinear). Cooperative
binding is most often observed in proteins, but nucleic
acids can also exhibit cooperative binding, for instance of
transcription factors. Cooperative binding has been
shown to be the mechanism underlying a large range of
biochemical and physiological processes.

This is a ‘‘Topic Page’’ article for PLOS Computational Biology.

History and Mathematical Formalisms

Christian Bohr and the Concept of Cooperative Binding
In 1904, Christian Bohr studied hemoglobin binding to oxygen

under different conditions [1]. When plotting hemoglobin

saturation with oxygen as a function of the partial pressure of

oxygen, he obtained a sigmoidal (or ‘‘S-shaped’’) curve, see

Figure 1. This indicates that the more oxygen is bound to

hemoglobin, the easier it is for more oxygen to bind—until all

binding sites are saturated. In addition, Bohr noticed that

increasing CO2 pressure shifted this curve to the right—i.e.,

higher concentrations of CO2 make it more difficult for

hemoglobin to bind oxygen [1]. This latter phenomenon, together

with the observation that hemoglobin’s affinity for oxygen

increases with increasing pH, is known as the Bohr effect.

A receptor molecule is said to exhibit cooperative binding if its

binding to ligand scales nonlinearly with ligand concentration.

Cooperativity can be positive (if binding of a ligand molecule

increases the receptor’s apparent affinity, and hence increases the

chance of another ligand molecule binding) or negative (if binding

of a ligand molecule decreases affinity and hence makes binding of

other ligand molecules less likely). Figure 1 is a chart of the

‘‘fractional occupancy’’ �YY of a receptor with a given ligand, which

is defined as the quantity of ligand-bound binding sites divided by

the total quantity of ligand binding sites:

�YY~
bound sites½ �

bound sites½ �z unbound sites½ �

~
bound sites½ �
total sites½ �

If �YY~0, then the protein is completely unbound, and if �YY~1,

it is completely saturated. If the plot of �YY at equilibrium as a

function of ligand concentration is sigmoidal in shape, as observed

by Bohr for hemoglobin, this indicates positive cooperativity. If it is

not, no statement can be made about cooperativity from looking at

this plot alone.

The concept of cooperative binding only applies to molecules or

complexes with more than one ligand binding site. If several ligand

binding sites exist, but ligand binding to any one site does not

affect the others, the receptor is said to be noncooperative.

Cooperativity can be homotropic, if a ligand influences the

binding of ligands of the same kind, or heterotropic, if it influences

binding of other kinds of ligands. In the case of hemoglobin, Bohr

observed homotropic positive cooperativity (binding of oxygen

facilitates binding of more oxygen) and heterotropic negative

cooperativity (binding of CO2 reduces hemoglobin’s facility to

bind oxygen).

Throughout the twentieth century, various frameworks have

been developed to describe the binding of a ligand to a protein

with more than one binding site and the cooperative effects

observed in this context (reviewed by Wyman, J. and Gill, 1990

[2]).

The Hill Equation
The first description of cooperative binding to a multisite

protein was developed by A.V. Hill [3]. Drawing on observations

of oxygen binding to hemoglobin and the idea that cooperativity

arose from the aggregation of hemoglobin molecules, each one

binding one oxygen molecule, Hill suggested a phenomenological

equation that has since been named after him

�YY~
K : X½ �n

1zK : X½ �n ~
X½ �n

Kdz X½ �n

where n is the ‘‘Hill coefficient,’’ [X] denotes ligand concentration,

K denotes an apparent association constant (used in the original

form of the equation), and Kd is an apparent dissociation constant

(used in modern forms of the equation). If n,1, the system exhibits

negative cooperativity, whereas cooperativity is positive if n.1.

The total number of ligand binding sites is an upper bound for n.

The Hill equation can be linearized as:
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log
�YY

1{ �YY
~n:log X½ �{logKd

The ‘‘Hill plot’’ is obtained by plotting log
�YY

1{ �YY
versus log[X].

In the case of the Hill equation, it is a line with slope nH and

intercept log(Kd) (see Figure 2). This means that cooperativity is

assumed to be fixed, i.e., it does not change with saturation. It

also means that binding sites always exhibit the same affinity, and

cooperativity does not arise from an affinity increasing with

ligand concentration.

The Adair Equation
G. S. Adair found that the Hill plot for hemoglobin was not a

straight line, and hypothesized that cooperativity was not a fixed

term, but dependent on ligand saturation [4]. Having demon-

strated that hemoglobin contained four hemes (and therefore

binding sites for oxygen), he worked from the assumption that fully

saturated hemoglobin is formed in stages, with intermediate forms

with one, two, or three bound oxygen molecules. The formation of

each intermediate stage from unbound hemoglobin can be

described using an apparent macroscopic association constant

Ki. The resulting fractional occupancy can be expressed as:

�YY~
1

4
:KI X½ �z2KII X½ �2z3KIII X½ �3z4KIV X½ �4

1zKI X½ �zKII X½ �2zKIII X½ �3zKIV X½ �4

Or, for any protein with n ligand binding sites:

�YY~
1

n
: KI X½ �z2KII X½ �2z . . . znKn X½ �n

1zKI X½ �zKII X½ �2z . . . zKn X½ �n

where n denotes the number of binding sites and each Ki is a

combined association constant, describing the binding of i ligand

molecules.

The Klotz Equation
Working on calcium binding proteins, Irving Klotz deconvo-

luted Adair’s association constants by considering stepwise

formation of the intermediate stages, and tried to express the

cooperative binding in terms of elementary processes governed by

mass action law [5,6]. In his framework, K1 is the association

constant governing binding of the first ligand molecule, K2 the

association constant governing binding of the second ligand

molecule (once the first is already bound), etc. For �YY , this gives:

�YY~
1

n

K1 X½ �z2K1K2 X½ �2z . . . zn K1K2 . . . Knð Þ X½ �n

1zK1 X½ �zK1K2 X½ �2z . . . z K1K2 . . . Knð Þ X½ �n

It is worth noting that the constants K1, K2, and so forth do not

relate to individual binding sites. They describe how many binding

sites are occupied, rather than which ones. This form has the

advantage that cooperativity is easily recognised when considering

the association constants. If all ligand binding sites are identical

with a microscopic association constant K, one would expect

K1~nK ,K2~
n{1

2
K , . . . ,Kn~

1

n
K (that is Ki~

n{iz1

i
K ) in

the absence of cooperativity. We have positive cooperativity if Ki

lies above these expected values for i.1.

The Klotz equation (which is sometimes also called the Adair-

Klotz equation) is still often used in the experimental literature to

describe measurements of ligand binding in terms of sequential

apparent binding constants [5].

Pauling Equation
By the middle of the twentieth century, there was an increased

interest in models that would not only describe binding curves

phenomenologically, but offer an underlying biochemical mech-

anism. Linus Pauling reinterpreted the equation provided by

Adair, assuming that his constants were the combination of the

binding constant for the ligand (K in the equation below) and

energy coming from the interaction between subunits of the

Figure 2. Hill plot of the Hill equation in red, showing the slope
of the curve being the Hill coefficient and the intercept with
the x-axis providing the apparent dissociation constant. The
green line shows the noncooperative curve.
doi:10.1371/journal.pcbi.1003106.g002

Figure 1. Original figure from Christian Bohr [1], showing the
sigmoidal increase of oxyhemoglobin as a function of the
partial pressure of oxygen.
doi:10.1371/journal.pcbi.1003106.g001
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cooperative protein (a below) [7]. Pauling actually derived several

equations, depending on the degree of interaction between

subunits. Based on wrong assumptions about the localisation of

hemes, he opted for the wrong one to describe oxygen binding by

hemoglobin, assuming the subunits were arranged in a square.

The equation below provides the equation for a tetrahedral

structure, which would be more accurate in the case of

hemoglobin:

�YY~
K X½ �z3aK2 X½ �2z3a3K3 X½ �3za6K4 X½ �4

1z4K X½ �z6aK2 X½ �2z4a3K3 X½ �3za6K4 X½ �4

The KNF Model
Based on results showing that the structure of cooperative

proteins changed upon binding to their ligand, Daniel Koshland.

and colleagues [8] refined the biochemical explanation of the

mechanism described by Pauling [7]. The Koshland-Némethy-

Filmer (KNF) model assumes that each subunit can exist in one of

two conformations: active or inactive. Ligand binding to one

subunit would induce an immediate conformational change of that

subunit from the inactive to the active conformation, a mechanism

described as ‘‘induced fit’’ [9]. Cooperativity, according to the

KNF model, would arise from interactions between the subunits,

the strength of which varies depending on the relative conforma-

tions of the subunits involved. For a tetrahedric structure (they also

considered linear and square structures), they proposed the

following formula:

�YY~

K3
AB

KX Kt X½ �ð Þz3K4
AB

KBB KX Kt X½ �ð Þ2z3K3
AB

K3
BB

KX Kt X½ �ð Þ3zK6
BB

KX Kt X½ �ð Þ4

1z4K3
AB

KX Kt X½ �ð Þz6K4
AB

KBB KX Kt X½ �ð Þ2z4K3
AB

K3
BB

KX Kt X½ �ð Þ3zK6
BB

KX Kt X½ �ð Þ4

where KX is the constant of association for X, Kt is the ratio of B

and A states in the absence of ligand (‘‘transition’’), and KAB and

KBB are the relative stabilities of pairs of neighbouring subunits

relative to a pair where both subunits are in the A state (note that

the KNF paper actually presents Ns, the number of occupied sites,

which is here 4 times �YY ).

The MWC Model
The Monod-Wyman-Changeux (MWC) model for concerted

allosteric transitions [10] went a step further by exploring

cooperativity based on thermodynamics and three-dimensional

conformations. It was originally formulated for oligomeric proteins

with symmetrically arranged, identical subunits, each of which has

one ligand binding site. According to this framework, two (or

more) interconvertible conformational states of an allosteric

protein coexist in a thermal equilibrium. The states—often termed

tense (T) and relaxed (R)—differ in affinity for the ligand molecule.

The ratio between the two states is regulated by the binding of

ligand molecules that stabilises the higher-affinity state. Impor-

tantly, all subunits of a molecule change states at the same time, a

phenomenon known as ‘‘concerted transition.’’ The MWC model

is illustrated in Figure 3 and Figure 4.

The allosteric isomerisation constant L describes the equilibrium

between both states when no ligand molecule is bound: L~
T0½ �
R0½ �

.

If L is very large, most of the protein exists in the T state in the

absence of ligand. If L is small (close to one), the R state is nearly as

populated as the T state. The ratio of dissociation constants for the

ligand from the T and R states is described by the constant c:

c~
KR

d

KT
d

. If c = 1, both R and T states have the same affinity for the

ligand and the ligand does not affect isomerisation. The value of c

also indicates how much the equilibrium between T and R states

changes upon ligand binding: the smaller c, the more the

equilibrium shifts towards the R state after one binding. With

a~
X½ �

KR
d

, fractional occupancy is described as:

�YY~
a 1zað Þn{1

zLca 1zcað Þn{1

1zað ÞnzL 1zcað Þn

The sigmoid Hill plot of allosteric proteins (shown in Figure 5)

can then be analysed as a progressive transition from the T state

Figure 3. Reaction scheme of a Monod-Wyman-Changeux
model of a protein made up of two protomers. The protomer
can exist under two states, each with a different affinity for the ligand. L
is the ratio of states in the absence of ligand, c is the ratio of affinities.
doi:10.1371/journal.pcbi.1003106.g003

Figure 4. Energy diagram of a Monod-Wyman-Changeux
model of a protein made up of two protomers. The larger affinity
of the ligand for the R state means that the latter is preferentially
stabilised by the binding.
doi:10.1371/journal.pcbi.1003106.g004
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(low affinity) to the R state (high affinity) as the saturation

increases. The Hill coefficient also depends on saturation, with a

maximum value at the inflexion point. The intercepts between the

two asymptotes and the y-axis allow us to determine the affinities

of both states for the ligand.

In proteins, conformational change is often associated with

activity, or activity towards specific targets. Such activity is often

what is physiologically relevant or what is experimentally

measured. The degree of conformational change is described by

the state function �RR, which denotes the fraction of protein present

in the R state. As the energy diagram illustrates, �RR increases as

more ligand molecules bind. The expression for �RR is:

�RR~
1zað Þn

1zað ÞnzL 1zcað Þn

A crucial aspect of the MWC model is that the curves for �YY
and �RR do not coincide [11], i.e., fractional saturation is not a

direct indicator of conformational state (and hence, of activity).

Moreover, the extents of the cooperativity of binding and the

cooperativity of activation can be very different: an extreme

case is provided by the bacteria flagella motor with a Hill

coefficient of 1.7 for the binding and 10.3 for the activation

[12,13]. The supralinearity of the response is sometimes called

ultrasensitivity.

If an allosteric protein binds to a target that also has a higher

affinity for the R state, then target binding further stabilises the R

state, hence increasing ligand affinity. If, on the other hand, a

target preferentially binds to the T state, then target binding will

have a negative effect on ligand affinity. Such targets are called

allosteric modulators.

Since its inception, the MWC framework has been extended

and generalised. Variations have been proposed, for example, to

cater for proteins with more than two states [14], proteins that

bind to several types of ligands [15,16] or several types of allosteric

modulators [16], and proteins with nonidentical subunits or

ligand-binding sites [17].

Examples of Cooperative Binding

The list of molecular assemblies that exhibit cooperative binding

of ligands is very large, but some examples are particularly notable

for their historical interest, their unusual properties, or their

physiological importance.

As described in the historical section, the most famous example

of cooperative binding is hemoglobin. Its quaternary structure,

solved by Max Perutz using X-ray diffraction [18], exhibits a

pseudo-symmetrical tetrahedron carrying four binding sites

(hemes) for oxygen (see Figure 6). Many other molecular

assemblies exhibiting cooperative binding have been studied in

great detail.

Multimeric Enzymes
The activity of many enzymes is regulated by allosteric effectors.

Some of these enzymes are multimeric and carry several binding

sites for the regulators.

Threonine deaminase was one of the first enzymes suggested to

behave like hemoglobin [19] and shown to bind ligands

cooperatively [20]. It was later shown to be a tetrameric protein

[21].

Another enzyme that was suggested early to bind ligands

cooperatively is aspartate trans-carbamylase [22]. Although initial

models were consistent with four binding sites [23], its structure

was later shown to be hexameric by William Lipscomb and

colleagues [24].

Ion Channels
Most ion channels are formed by several identical or pseudo-

identical monomers or domains, arranged symmetrically in

biological membranes. Several classes of such channels whose

opening is regulated by ligands exhibit cooperative binding of

these ligands.

It was suggested as early as 1967 [25] (when the exact nature of

those channels was still unknown) that the nicotinic acetylcholine

receptors bound acetylcholine in a cooperative manner due to the

existence of several binding sites. The purification of the receptor

[26] and its characterization demonstrated a pentameric structure

with binding sites located at the interfaces between subunits,

confirmed by the structure of the receptor binding domain [27].

Figure 5. Hill plot of the MWC binding function in red, of the
pure T and R state in green. As the conformation shifts from T to R,
so does the binding function. The intercepts with the x-axis provide the
apparent dissociation constant as well as the microscopic dissociation
constants of the R and T states.
doi:10.1371/journal.pcbi.1003106.g005

Figure 6. Cartoon representation of the protein hemoglobin in
its two conformations: ‘‘tensed (T )’’ on the left corresponding
to the deoxy form (derived from Protein Data Bank entry 1LFL)
and ‘‘relaxed (R)’’ on the right corresponding to the oxy form
(derived from Protein Data Bank entry 1LFT). Alpha globins are
red and green, while beta globins are yellow and orange.
doi:10.1371/journal.pcbi.1003106.g006
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Inositol triphosphate (IP3) receptors form another class of

ligand-gated ion channels exhibiting cooperative binding [28].

The structure of those receptors shows four IP3 binding sites

symmetrically arranged [29].

Multisite Molecules
Although most proteins showing cooperative binding are

multimeric complexes of homologous subunits, some proteins

carry several binding sites for the same ligand on the same

polypeptide. One such example is calmodulin (Figure 7). One

molecule of calmodulin binds four calcium ions cooperatively [30].

Its structure presents four EF-hand domains [31], each one

binding one calcium ion. Interestingly, the molecule does not

display a square or tetrahedron structure, but is formed of two

lobes, each carrying two EF-hand domains.

Transcription Factors
Cooperative binding of proteins onto nucleic acids has also been

shown. A classical example is the binding of the lambda phage

repressor to its operators, which occurs cooperatively [32,33].

Other examples of transcription factors exhibit positive coopera-

tivity when binding their target, such as the repressor of the

TtgABC pumps [34] (n = 1.6).

Conversely, examples of negative cooperativity for the binding

of transcription factors were also documented, as for the

homodimeric repressor of the Pseudomonas putida cytochrome

P450cam hydroxylase operon (n = 0.56) [35].

Conformational Spread and Binding Cooperativity
Early on, it was argued that some proteins, especially those

consisting of many subunits, could be regulated by a generalised

MWC mechanism, in which the transition between R and T state

is not necessarily synchronized across the entire protein [36]. In

1969, Wyman [37] proposed such a model with ‘‘mixed

conformations’’ (i.e., some protomers in the R state, some in the

T state) for respiratory proteins in invertebrates.

Following a similar idea, the conformational spread model by

Duke and colleagues [38] subsumes both the KNF and the MWC

models as special cases. In this model, a subunit does not

automatically change conformation upon ligand binding (as in the

KNF model), nor do all subunits in a complex change

conformations together (as in the MWC model). Conformational

changes are stochastic with the likelihood of a subunit switching

states depending on whether or not it is ligand bound and on the

conformational state of neighbouring subunits. Thus, conforma-

tional states can ‘‘spread’’ around the entire complex.
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