Sneak Peek at 19 Science Simulations for Summit Supercomputer in 2019

By Katie Elyce Jones

January 23, 2019

This month, Summit Early Science Program users are starting to work on some of the world’s toughest science problems on its most powerful supercomputer: the 200-petaflop, IBM AC922 Summit system at the Oak Ridge Leadership Computing Facility (OLCF). The OLCF is a US Department of Energy Office of Science User Facility located at Oak Ridge National Laboratory (ORNL).

Not only is Summit significantly expanding the capabilities of modeling and simulation—from tracking the elements released in star explosions to virtually testing future fusion reactors—the system is taking researchers into new territory enabled by artificial intelligence (AI). From uncovering unseen patterns in cancer data to creating deep learning networks for scientific image analysis, 2019 is poised to be a groundbreaking year for applying AI algorithms to intractable data science problems. In this article, we preview just 19 of the more than 30 critical science topics and simulations researchers will be tackling on Summit during the Early Science period.

View the complete list of the Early Science projects here.

  1. Evolution of the universe 

To investigate big questions in modern cosmology, including the role of dark energy in the acceleration of the universe and the distribution of unseen dark matter, researchers will simulate a “virtual universe” on Summit that can be combined with observational results.

Project: Frontier Precision Cosmology with HACC
Principal investigator: Salman Habib, Argonne National Laboratory

  1. Whole-cell simulation

Scientists will use sophisticated experimental data on cellular structures like organelles in atomic detail to simulate the dynamics of what will likely be the first computationally modeled “protocell” that incorporates a cell’s essential features from the atomic to the cellular scale.

Project: Protocell: Petascale Simulation with NAMD and VMD Helps Understanding Cells at the Atomic Level
Principal investigator: Emad Tajkhorshid, University of Illinois-Urbana Champagne

  1. Inside a nuclear reactor

Researchers will simulate an operating nuclear reactor and compare the results with operational data from a real nuclear reactor plant. Summit will enable the team to simulate details that could not previously be computed, contributing to a national effort to extend the lifetimes of nuclear reactors.

Project: Full Power Simulation of the Watts Bar Nuclear Reactor using the Shift Monte Carlo Transport Solver
Principal investigator: Steven Hamilton, ORNL

  1. Post-Moore’s Law graphene circuits

Scientists will explore potential metals for components in atomically precise graphene nanoribbon circuits that could offer an alternative to traditional silicon-based computer circuitry, which is predicted to become too small by the 2020s to work reliably.

Project: Nanoscale Design of Contacts to Atomically Precise Graphene Devices
Principal investigator: Jerry Bernholc, North Carolina State University

  1. A critical point in the formation of matter

To help experimental researchers at Brookhaven National Laboratory’s Relativistic Heavy-Ion Collider find the critical point at which the particle “soup” of quarks and gluons present following the Big Bang coexists with matter as we know it (called hadronic matter), researchers will carry out fundamental physics calculations on Summit that require extreme computational power.

Project: Hot-dense Lattice QCD for RHIC Beam Energy
Principal investigator: Swagato Mukherjee, Brookhaven National Laboratory

  1. The cell’s molecular machine

Adenosine triphosphate (ATP) synthase is a protein found in photosynthetic cells that is extremely efficient at converting light energy into the cellular fuel ATP through tiny, atomic motions. By simulating ATP synthase on Summit, scientists might help guide the design of bio-inspired solar energy devices.

Project: All-atom simulations of motor proteins for cellular energy metabolism
Principal investigators: Abhishek Singharoy, Arizona State University

  1. Unpacking the nucleus

On Summit, scientists will use a computational approach based on the strong force that binds subatomic particles, known as lattice quantum-chromodynamics, to make calculations important to experimental searches aimed at uncovering new knowledge about the nucleus, such as the proton radius and potentially undiscovered states of matter at the subatomic level.

Project: Hadrons, nuclei and fundamental symmetries
Principal investigator: Robert Edwards, Thomas Jefferson National Accelerator Facility

  1. Mars landing 

To advance human exploration of the Red Planet, a NASA team will simulate flow between the Martian atmosphere and descending rocket exhaust.

Project: Enabling Human Exploration of the Red Planet
Principal investigator: Eric Nielsen, NASA

  1. Deep learning for microscopy data

Scientists are using an ORNL-developed AI system called MENNDL to automatically create deep learning networks that can rapidly extract information from electron microscopy data. Electron microscopy is an important tool for nanofabrication (atom-scale manufacturing), which is already being used in the development of new consumer devices, medicines, electronics, and more.

Project: Scalable Machine Learning of Scientific Data
Principal investigator: Robert Patton, ORNL

  1. Elements from star explosions

To understand the quantity and dissemination of elements expelled from supernovae, astrophysicists are using Summit to model nuclear burning with about 10 times more elements than previous state-of-the-art simulations. These massive simulations require computing at multiple scales, from large-scale fluid motion (hydrodynamics) calculations to small-scale particle interactions.

Project: Modeling Stellar Explosions and Their Nucleosynthesis with an Optimized FLASH Code
Principal investigator: Bronson Messer, ORNL

  1. Cancer data 

Using AI, researchers are training computers to extract important information from large volumes of clinical text and biomedical documents on cancer. Such information can be used to help doctors determine the best treatment for each patient and improve overall population health outcomes.

Project: Exascale AI to Advance Health Using Big Heterogeneous Biomedical Data
Principal investigator: Georgia Tourassi, ORNL

  1. Earthquake resilience for cities

To improve earthquake prediction for cities, researchers will use the computational power of Summit to couple the shaking of the ground with building structures in the same simulation while also modeling new physical features.

Project: Low-order Unstructured Finite-element Earthquake Simulation on Summit
Principal investigator: Kohei Fujita, University of Tokyo

  1. The nature of elusive neutrinos 

Scientists worldwide are studying the properties of the neutrino—a neutral subatomic particle that is nearly massless yet abundant in the universe and, once better understood, that could help answer unsolved problems in physics. A team of nuclear physicists are using Summit to generate an important benchmark for neutrino studies by computing a hypothetical type of nuclear decay known as neutrino-less double-beta decay in a calcium-48 nucleus.

Project: The neutrino-less double beta-decay of calcium-48
Principal investigator: Gaute Hagen, ORNL

  1. Extreme weather detailed with deep learning

To study extreme weather patterns like hurricanes at new levels of detail, researchers will use Summit to explore the application of deep learning to climate data analysis, which involves finding meaningful patterns in massive datasets.

Project: Exascale Deep Learning
Principal investigator: Prabhat, Lawrence Berkeley National Laboratory

  1. Flexible, lightweight solar cells

On Summit, researchers will model energy-converting processes in organic materials, which could guide designs for highly efficient organic photovoltaic devices that could be competitive with traditional solar cells.

Project: Organic Photovoltaic Materials Design Using the GronOR Non-Orthogonal Configuration Interaction Software
Principal investigator: Remco Havenith, University of Groningen

  1. Virtual fusion reactor 

Plasma physicists are using Summit as a “virtual fusion reactor” to model the behavior of plasma—the hot gas medium in which particles generate fusion energy. Understanding plasma behavior is critical for fusion experiments like ITER, which will explore how fusion can help sustainably meet growing global energy demand.

Project: Using XGC to predict ITER’s boundary plasma performance and its impact on fusion efficiency
Principal investigator: C. S. Chang, Princeton Plasma Physics Laboratory

  1. Unpredictable material properties

Materials scientists will simulate coupled structural and electronic phases using, for the first time, the quantum mechanics-based method Quantum Monte Carlo. By combining these two phases in transition metal oxides, known for their unpredictable yet useful properties, researchers aim to demonstrate structural optimization of these materials.

Project: Structurally complex oxides with Quantum Monte Carlo
Principal investigator: Paul Kent, ORNL

  1. Genetic clues in the opioid crisis 

In 2017, opioids contributed to more than 49,000 overdose deaths in the United States. In midst of this national public health crisis, researchers will use Summit to study complex genetic interactions that lead to physical traits, such as how people develop chronic pain and respond to opioids. The results could help inform treatment for patients predisposed to substance abuse and other conditions.

Project: Attacking the Opioid Epidemic: Determining the Epistatic and Pleiotropic Genetic Architectures for Chronic Pain and Opioid Addiction
Principal investigator: Dan Jacobson, ORNL

  1. Turbulent environments 

On Summit, researchers will explore how combustion takes place in turbulent environments such as gas turbines or car engines using a fluid dynamics solver that incorporates the multiscale and multiphysics processes at play in these systems.

Project: First Principles Investigation of Turbulent Scalar-Mixing and Combustion in Supercritical Fluids
Principal investigator: Joseph Oefelein, Georgia Tech

And that’s not all

Beyond the Summit Early Science Program, scientists from around the world are already beginning to access Summit through the 2019 DOE INCITE program, and there is still an opportunity for researchers to submit proposals for the 2019–2020 Advanced Scientific Computing Research (ASCR) Leadership Computing Challenge (ALCC) program, which focuses on projects that align with the DOE mission to ensure America’s security and prosperity by addressing its energy, environmental, and nuclear challenges through transformative science and technology solutions.

The ALCC call for proposals closes February 13, 2019. Visit the DOE Advanced ScientificComputing Research website to learn more.

Source: OLCF

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industry updates delivered to you every week!

Intersect360 Research Takes a Deep Dive into the HPC-AI Market in New Report

May 3, 2024

A new report out of analyst firm Intersect360 Research is shedding some new light on just how valuable the HPC and AI market is. Taking both of these technologies as a singular unit, Intersect360 Research found that the Read more…

Hyperion To Provide a Peek at Storage, File System Usage with Global Site Survey

May 3, 2024

Curious how the market for distributed file systems, interconnects, and high-end storage is playing out in 2024? Then you might be interested in the market analysis that Hyperion Research is planning on rolling out over Read more…

2024 Winter Classic: Meet Team Jackson State

May 3, 2024

This is the second time we’re seeing a team from Jackson State university. The team features two veterans of the 2023 Winter Classic, which should help, but it’s also a team whose members are involved in a lot of oth Read more…

2024 Winter Classic: NASA Results Revealed!

May 2, 2024

In this edition of the Winter Classic Studio Update Show we reveal the results from the NASA BTIO Challenge. The benchmark, BTIO, is a subset of the NAS Parallel benchmark and NASA set up a formidable set of milestones, Read more…

2024 Winter Classic: NASA Mentor Interview

May 2, 2024

The folks at NASA Ames once again did a bang-up job as a mentor for the 2024 Winter Classic. This is the third time they’ve fulfilled this vital function, and their challenges keep getting better and better. In thei Read more…

Qubit Watch: Intel Process, IBM’s Heron, APS March Meeting, PsiQuantum Platform, QED-C on Logistics, FS Comparison

May 1, 2024

Intel has long argued that leveraging its semiconductor manufacturing prowess and use of quantum dot qubits will help Intel emerge as a leader in the race to deliver practical quantum computing - a race that James Clarke Read more…

Hyperion To Provide a Peek at Storage, File System Usage with Global Site Survey

May 3, 2024

Curious how the market for distributed file systems, interconnects, and high-end storage is playing out in 2024? Then you might be interested in the market anal Read more…

Qubit Watch: Intel Process, IBM’s Heron, APS March Meeting, PsiQuantum Platform, QED-C on Logistics, FS Comparison

May 1, 2024

Intel has long argued that leveraging its semiconductor manufacturing prowess and use of quantum dot qubits will help Intel emerge as a leader in the race to de Read more…

Stanford HAI AI Index Report: Science and Medicine

April 29, 2024

While AI tools are incredibly useful in a variety of industries, they truly shine when applied to solving problems in scientific and medical discovery. Research Read more…

IBM Delivers Qiskit 1.0 and Best Practices for Transitioning to It

April 29, 2024

After spending much of its December Quantum Summit discussing forthcoming quantum software development kit Qiskit 1.0 — the first full version — IBM quietly Read more…

Shutterstock 1748437547

Edge-to-Cloud: Exploring an HPC Expedition in Self-Driving Learning

April 25, 2024

The journey begins as Kate Keahey's wandering path unfolds, leading to improbable events. Keahey, Senior Scientist at Argonne National Laboratory and the Uni Read more…

Quantum Internet: Tsinghua Researchers’ New Memory Framework could be Game-Changer

April 25, 2024

Researchers from the Center for Quantum Information (CQI), Tsinghua University, Beijing, have reported successful development and testing of a new programmable Read more…

Intel’s Silicon Brain System a Blueprint for Future AI Computing Architectures

April 24, 2024

Intel is releasing a whole arsenal of AI chips and systems hoping something will stick in the market. Its latest entry is a neuromorphic system called Hala Poin Read more…

Anders Dam Jensen on HPC Sovereignty, Sustainability, and JU Progress

April 23, 2024

The recent 2024 EuroHPC Summit meeting took place in Antwerp, with attendance substantially up since 2023 to 750 participants. HPCwire asked Intersect360 Resear Read more…

Nvidia H100: Are 550,000 GPUs Enough for This Year?

August 17, 2023

The GPU Squeeze continues to place a premium on Nvidia H100 GPUs. In a recent Financial Times article, Nvidia reports that it expects to ship 550,000 of its lat Read more…

Synopsys Eats Ansys: Does HPC Get Indigestion?

February 8, 2024

Recently, it was announced that Synopsys is buying HPC tool developer Ansys. Started in Pittsburgh, Pa., in 1970 as Swanson Analysis Systems, Inc. (SASI) by John Swanson (and eventually renamed), Ansys serves the CAE (Computer Aided Engineering)/multiphysics engineering simulation market. Read more…

Intel’s Server and PC Chip Development Will Blur After 2025

January 15, 2024

Intel's dealing with much more than chip rivals breathing down its neck; it is simultaneously integrating a bevy of new technologies such as chiplets, artificia Read more…

Comparing NVIDIA A100 and NVIDIA L40S: Which GPU is Ideal for AI and Graphics-Intensive Workloads?

October 30, 2023

With long lead times for the NVIDIA H100 and A100 GPUs, many organizations are looking at the new NVIDIA L40S GPU, which it’s a new GPU optimized for AI and g Read more…

Baidu Exits Quantum, Closely Following Alibaba’s Earlier Move

January 5, 2024

Reuters reported this week that Baidu, China’s giant e-commerce and services provider, is exiting the quantum computing development arena. Reuters reported � Read more…

Choosing the Right GPU for LLM Inference and Training

December 11, 2023

Accelerating the training and inference processes of deep learning models is crucial for unleashing their true potential and NVIDIA GPUs have emerged as a game- Read more…

Shutterstock 1606064203

Meta’s Zuckerberg Puts Its AI Future in the Hands of 600,000 GPUs

January 25, 2024

In under two minutes, Meta's CEO, Mark Zuckerberg, laid out the company's AI plans, which included a plan to build an artificial intelligence system with the eq Read more…

AMD MI3000A

How AMD May Get Across the CUDA Moat

October 5, 2023

When discussing GenAI, the term "GPU" almost always enters the conversation and the topic often moves toward performance and access. Interestingly, the word "GPU" is assumed to mean "Nvidia" products. (As an aside, the popular Nvidia hardware used in GenAI are not technically... Read more…

Leading Solution Providers

Contributors

China Is All In on a RISC-V Future

January 8, 2024

The state of RISC-V in China was discussed in a recent report released by the Jamestown Foundation, a Washington, D.C.-based think tank. The report, entitled "E Read more…

Nvidia’s New Blackwell GPU Can Train AI Models with Trillions of Parameters

March 18, 2024

Nvidia's latest and fastest GPU, codenamed Blackwell, is here and will underpin the company's AI plans this year. The chip offers performance improvements from Read more…

Shutterstock 1285747942

AMD’s Horsepower-packed MI300X GPU Beats Nvidia’s Upcoming H200

December 7, 2023

AMD and Nvidia are locked in an AI performance battle – much like the gaming GPU performance clash the companies have waged for decades. AMD has claimed it Read more…

Eyes on the Quantum Prize – D-Wave Says its Time is Now

January 30, 2024

Early quantum computing pioneer D-Wave again asserted – that at least for D-Wave – the commercial quantum era has begun. Speaking at its first in-person Ana Read more…

The GenAI Datacenter Squeeze Is Here

February 1, 2024

The immediate effect of the GenAI GPU Squeeze was to reduce availability, either direct purchase or cloud access, increase cost, and push demand through the roof. A secondary issue has been developing over the last several years. Even though your organization secured several racks... Read more…

Intel Plans Falcon Shores 2 GPU Supercomputing Chip for 2026  

August 8, 2023

Intel is planning to onboard a new version of the Falcon Shores chip in 2026, which is code-named Falcon Shores 2. The new product was announced by CEO Pat Gel Read more…

GenAI Having Major Impact on Data Culture, Survey Says

February 21, 2024

While 2023 was the year of GenAI, the adoption rates for GenAI did not match expectations. Most organizations are continuing to invest in GenAI but are yet to Read more…

Q&A with Nvidia’s Chief of DGX Systems on the DGX-GB200 Rack-scale System

March 27, 2024

Pictures of Nvidia's new flagship mega-server, the DGX GB200, on the GTC show floor got favorable reactions on social media for the sheer amount of computing po Read more…

  • arrow
  • Click Here for More Headlines
  • arrow
HPCwire