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I would like to thank the Nobel Assembly of the Karolinska Institutet for the 
opportunity to describe some recent work on RNA-triggered gene silencing. 
First a few disclaimers, however. Telling the full story of gene silencing would 
be a mammoth enterprise that would take me many years to write and would 
take you well into the night to read. So we’ll need to abbreviate the story 
more than a little. Second (and as you will see) we are only in the dawn of 
our knowledge; so consider the following to be primer... the best we could do 
as of December 8th, 2006. And third, please understand that the story that I
am telling represents the work of several generations of biologists, chemists, 
and many shades in between. I’m pleased and proud that work from my labo-
ratory has contributed to the field, and that this has led to my being chosen 
as one of the messengers to relay the story in this forum. At the same time, I
hope that there will be no confusion of equating our modest contributions 
with those of the much grander RNAi enterprise.

DOUBLE STRANDED RNA AS A BIOLOGICAL ALARM SIGNAL

These disclaimers in hand, the story can now start with a biography of the 
first main character. Double stranded RNA is probably as old (or almost as 
old) as life on earth. Scientific recognition of this form of RNA is, however, a 
bit more recent, dating from the mid 1950s. The same kinds of base pairs of 
that can zip strands of DNA into a helix [1] were recognized just a few years 
later as being a feature of RNA structure [2–5]. When two RNA strands have 
extended regions of complementary sequence they can zip together to form 
a somewhat flexible rod-like structure similar in character (but distinct in 
detail [5,6]) from that of the DNA double helix.

The occurrence of double stranded RNAs in biological systems was un-
covered in a number of experiments in the early 1960s [7–9]. Intriguingly
all of the biological systems initially found to be sources for double stranded 
RNA involved virus infection. This data supported a proposal that many 
viruses might replicate from RNA to RNA through a double stranded RNA
intermediate. At the time, the central dogma of molecular biology was being 
experimentally established, giving a clear indication that cells mainly used 
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double stranded DNA and single stranded RNA for long and short term infor-
mation storage respectively. This left no place in normal cellular information 
flow for double stranded RNA, while leaving a key role (at least transiently) 
for dsRNA in replication of RNA viruses. 

Our story next jumps back almost thirty years to a set of experiments that 
were directed toward an understanding host cell responses to viral infection 
[10,11]. These experiments involve two different (essentially unrelated) 
viruses infecting a single host (Figure 1). One virus was quite virulent and 
would kill its unfortunate host animal, while the second virus was relatively 
benign, causing only minor symptoms. The surprising result was that a 
preliminary infection with the benign virus could provide resistance to a 
subsequent challenge by the more virulent, nasty virus. The conclusion from 
these results is that the host (a rabbit in this case) has a way of knowing that 
it has been challenged by a viral pathogen and somehow sends itself a signal 
allowing resistance to further challenge. Although the ability of viruses to in-
duce immune responses had been known for a long time, these results were 
unexpected by virtue of the apparent lack of relatedness between the two 
viruses used in the experiment. The generalized response to infection was 

Figure 1. Diagram of viral interference effects (‘innate immunity’) in mammals. Top, A
highly virulent virus (represented as a blue hexagon) will result in death if inoculated into 
a “naive” host animal.  Middle, A less virulent and unrelated virus (represented as a red 
pentagon) infects cells but causes little or no systemic pathology, the animal remains alive.  
Bottom, a preliminary infection with the less virulent virus (red) leads to induction of an 
innate immune response which allows the animal to survive a subsequent challenge with 
the highly virulent (blue) virus.
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a new phenomenon and led to an understanding of immune mechanisms 
that involve general alarm responses. A key follow-up to this observation was 
made about 20 years later when Isaacs and Lindeman [12] actually separated 
a protein component from the challenged animals that could transfer the 
general viral resistance when injected into naive animals. That protein com-
ponent was called interferon.

In the course of this analysis, a physician/scientist named Richard Shope
became interested in applying the innate immune response by finding treat-
ments that would induce generalized immunity to provide viral resistance. 
Traveling the world at the end of the second world war, he collected biologi-
cal materials looking for something that could be ground up and used as a 
starting material. His most notable success came from a fungus (Penicillium
funiculosum) that he found in Guam growing on a picture of his wife Helen. 
Calling the extracts of the fungus “Helenine”, Shope found that these could 
induce an interferon response in animals [13].  

A next chapter in this early story was carried out by Maurice Hilleman’s 
group at Merck, who used Shope’s fungus as a starting point to purify the 
material that was actually responsible for the viral resistance. In a paper 
published in 1967 [14], they showed that double stranded RNA was present 
in the fungal extracts and was responsible for the induction of resistance. 
Given that there would have been little or no sequence similarity between the 
fungus-derived dsRNA and the viral target, they then tested additional very 
distantly related natural and synthetic double stranded RNAs and found that 
all could induce an interferon response [15–17]. There were (of course) 
many different questions raised by this study. Paramount perhaps was the 
question of why double stranded RNA was present in the fungus. Hilleman’s 
publications suggested the intriguing hypothesis this was due to a fortuitous 
viral infection of the fungus. In fact, they had discovered an ancient system 
by which cells could sense a molecule that was a bellwether of viral infection 
(dsRNA) and respond by producing a signal that would tell the organism to 
dedicate its efforts and energies toward fighting viruses. 

Early studies of systemic immunity were by no means limited to animal 
cells. Even as the first observations of an “interferon” response in animals 
were made in the 1930s, it had already been observed that plants could 
induce some remarkable immune responses. Applying a virus in one area 
of a plant could yield viral resistance (at least in some cases) that extended 
throughout the plant [e.g., 18,19]. Although these experiments indicated 
that plant had an immune system, it was known that they lacked the specific 
immune components (including antibodies and white blood cells) that had 
been studied for many years in animals.

This historical context of the gene silencing field thus includes the early 
recognition of an animal immune response (albeit a general one) depend-
ent on double stranded RNA, and a plant immune response (albeit with 
trigger unknown) that could disseminate a specific signal over substantial 
biological distances. 
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GENE SILENCING ASSAYS IN A CONVENIENT NEMATODE

Now it’s time to introduce another lead character into our story, one that is a 
close friend to Craig, myself, and to a few thousand other researchers world-
wide. Caenorhabditis elegans is a nematode roundworm about 1 millimeter in 
length. In this lecture series, there were three talks on C. elegans in 2002 by 
Sydney Brenner, John Sulston and Bob Horvitz. Dr. Brenner credited “the 
worm” as deserving a significant portion of the scientific accolades (although 
he was reluctant to provide a monetary share to the worm) [20]. We should 
certainly credit this beast as well: C. elegans has turned out to be a very fortu-
nate choice for studies of gene silencing. As you will see, the worm’s vehe-
ment responses to foreign information have provided first great frustration 
and later some valuable insights. 

One of the aspects of C. elegans that Craig and I have been very pleased 
with is the ability to microinject macromolecules (DNA, RNA, protein) into 
the animal [21–25]. Figure 2 is a picture that Craig took of this process, show-
ing a fine glass needle injecting solution into an animal. After the needle 
pierces the cuticle, pressure is applied and some of the fluid comes into the 
cell that is being filled. The cell being injected in this photo is the germline 
or gonad of the worm, a large cell with hundreds of individual nuclei sur-
rounding a common core of cytoplasm. Each gonad will generate hundreds 
of oocytes, making this is a remarkable technique for being able to influence 
a large population of animals with just a single microinjection. The micro-
injection needle can be filled with almost any liquid including the great 
variety DNAs, RNAs, and proteins that we can now design and synthesize in 
the lab. The simplicity of microinjection for C. elegans provided an enticing 
experimental tool to manipulate the genome of the organism and observe 
the consequences to developmental events and physiology. At the same time, 
this technology has allowed a number of us in the field to study the diverse 
responses this system has to foreign information. 

Among the goals pursued in early applications of C. elegans microinjec-
tion was to turn down or turn up gene expression for specific genes. In the 
mid 1980s, as a Helen Hay Whitney Fellow working at the Medical Research
Council Lab of Molecular Biology, in Cambridge UK, I had begun doing 
experiments toward this goal, using among other tools the unc-22 gene 
that provided some of the first characterized DNA clones for the worm. It
was already known through some very nice classical genetics that reducing 
expression of unc-22 led to a movement defect, a twitching behavior that 
is very characteristic of alterations in the activity of this gene [26,27]. Don
Moerman, Guy Benian, and Bob Waterston prepared fragments of unc-22
[28] that I then injected with the hope that the injected fragments might 
recombine with the normal unc-22 allele and produce a loss-of-function 
character that could then be studied. The results of these experiments were 
a puzzle: although twitching worms appeared in populations derived from 
the injected animals, there was no direct alteration in the original unc-22
gene. Instead of the sought-after recombination event, it appeared that the 
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presence of extra DNA from the unc-22 locus could induce the worm to turn 
down expression of the endogenous unc-22 gene [29].  Several explanations 
for this unusual suppression effect seemed reasonable at the time: perhaps 
the endogenous unc-22 locus DNA somehow paired with the foreign copies 
of this DNA; perhaps the foreign DNA was a template for synthesis of some 
amount of antisense RNA, which would then neutralize the activity of the 
normal transcript by base pairing, perhaps the fragments of unc-22 were 
producing an aberrant protein or binding an essential regulatory factor, and 
perhaps there were some other mechanisms that were yet to be recognized.

Regardless of the actual mechanism of the interference in these initial 
experiments, the antisense strategy for “targeted” disruption of gene expres-
sion seemed particularly worthy of an explicit test. Such strategies were by 
no means novel at the time, having been pioneered some years earlier by 
Zamecnik and Stephenson [30], and by Izant and Weintraub [31]. In 1987, 
just after moving to Carnegie Institution in Baltimore, my co-worker Susan
White-Harrison began to build DNA constructs to perform such an explicit 
test. Susan’s constructions relied on our ongoing elucidation of muscle pro-
moters (DNA sequences that instruct RNA polymerase to begin RNA synthe-
sis in muscle cell nuclei). We expected a promoter hooked up to an unc-22
fragment in the “antisense” orientation to give antisense RNA and thus per-
haps gene silencing while the corresponding “sense” construct would give at 
most an excess of the sense strand and thus no expected silencing. We were 
hardly surprised when the antisense constructs produced a targeted inter-
ference effect (knockdown of the corresponding endogenous gene). This
was consistent with a substantial number of reports of successful antisense 
intervention already in the literature. We were very surprised, however, when 
the control ‘sense’ constructs produced a similar interference effect [32,33].  
The assumption for the “experimental” construct was that the antisense 
RNAs were finding their sense equivalents by standard Watson-Crick base 
pairing and taking the sense RNAs out of circulation. So what was going on 

Figure 2.  Micrograph of microinjection needle delivering a solution of DNA to the gonad 
of a Caenorhabditis adult hermaphrodite. Left, Microinjection needle poised at the side of 
the worm.  The needle is filled with a solution for injection and is kept under a slight posi-
tive pressure until it is inserted into an animal (middle) whereupon an increase in pres-
sure leads to microinjection of a volume of the material from the needle.  After this, the 
needle is removed and the cuticle of the animal quickly recovers.  Photographs courtesy of 
Dr. Craig C. Mello and reprinted from Mello and Fire, 1995 [25].
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with the sense constructs (where if anything, we might expect the fragment 
inserted into the expression vector to be over-expressed)? Although this 
mystery was intriguing, it was hardly compelling at the time. The propensity 
for DNA transgenes to produce unwanted RNA transcription was certainly a 
good starting point for potential models, and a reasonable explanation (that 
somewhat dampened any immediate research on our part) would have been 
that the transgenes for some reason produced sufficient antisense RNA to 
yield an interference effect.     

A significant milestone in the study of silencing in C. elegans was the demon-
stration that direct RNA injection could induce an interference effect [34].  
This observation came from work of Su Guo, who at the time was a graduate 
student in Ken Kemphues' lab at Cornell. Sue’s insight that injection of RNA
might provoke silencing turned out to be correct. Moreover, she was able 
to demonstrate effects with either sense or antisense preparations of RNA.  
This set of experiments had two lessons. First, the experiments established a 
remarkably efficient means of disrupting gene activity (particularly in embry-
os), thus facilitating a wealth of experiments in what we now call functional 
genomics (efforts to assign function to genes that are discovered by large 
scale sequencing). Second, the mystery of the interfering sense preparations 
was accentuated since ‘sense’ RNA preparations could still trigger an inter-
ference response.

After Su’s experiments established RNA-triggered silencing as both a mys-
tery and a powerful technique for studying gene function in the embryo, 
several other groups started working with the technique and marveling at 
it’s unusual character. Craig Mello, first as a postdoctoral fellow working with 
Jim Priess at the Fred Hutchinson Cancer Research Center, and then as a 
new faculty member at the University of Massachusetts, began in particular 
to apply the technique [35] and to study the phenomenon as a window on 
a fascinating fragment of the tapestry of biological regulation. As I will de-
scribe later, a significant advance in understanding the concerted nature of 
the response came when Sam Driver and Craig discovered that the silencing 
could be evoked by a diffusible and specific molecular signal. As the expe-
rience from Craig’s group and others with this odd form of gene silencing 
accumulated, much of the information was shared with the C. elegans com-
munity. Although the name “antisense” had initially been used to describe 
this process, it was clear (from the ‘sense’ results) that the phenomenon was 
not a simple one of antisense occlusion. There was thus a need for a new 
designation for the process, and after putting a few potential names to a vote, 
Craig chose the term “RNAi” (‘RNA interference’) to refer to the observed 
silencing process(es) [35].

TOWARD A STRUCTURAL UNDERSTANDING OF THE RNAi TRIGGER

For my perspective at the time (at that point as an observer of work in other 
labs on the worm’s response to injected RNA), much of the accumulating 
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data came together at an informal discussion on RNA-triggered silencing 
organized by Craig at the 1997 C. elegans meeting in Madison, Wisconsin. 
The workshop was held in the theatre of the Student Union, with the nor-
mal capacity of the room overwhelmed (I was sitting on the floor). At the 
time, there were several very clear but also very unexplained features of the 
response. In addition to the diffusible signaling data (reported by Driver
at the previous year’s C. elegans meeting), and the ability of both sense and 
antisense strands to produce the interference effect, there was a remarkable 
persistence to the effect. From work of Craig, Rueyling Lin, Morgan Park 
and Mike Krause, and from Patty Kuwabara [36], it was clear that injected 
RNAs could have effects for several days after the injection occurred (and 
in some cases generations after the initial injections). This contrasted with 
observations that Geraldine Seydoux had made several years earlier [37], 
showing that many native RNAs were comparatively unstable during the same 
time period in the same cells. The confluence of these two results suggested 
perhaps that the active interfering material had some kind of a privilege in 
its stability. Perhaps the injected material contained a fraction of particularly 
stable molecules that were responsible for the persistent interference.  

Double stranded RNA was known to be relatively stable both chemically 
and enzymatically [e.g., 38]. In addition, dsRNA was a known low level con-
taminant in synthetic RNA preparations [e.g., 39]. From my graduate work 
with RNA polymerases, I was certainly also very familiar with the sometimes 
annoying ability of RNA polymerases to start in vitro at ends and other for-
tuitous sites. Thus the concept that double stranded RNA might be a com-
ponent of the injected material was hardly a leap of logic. Arguing strongly 
against dsRNA as a potential effector was the fact that native dsRNA would 
have no free base pairs to interact with matching molecules in the cell. Thus
a rational first guess would have been that injected dsRNA would have been 
unable to interact specifically with cognate sequences and thus rather use-
less for triggering genetic interference. A critical review of my research plan 
coming out of the 1997 worm meeting would certainly have brought this up 
as a major concern. One could imagine (in retrospect as well as currently) 
many different models and explanations for the phenomena. Some scen-
arios would have spawned interesting experimental investigations while 
others would have been of only limited interest; I was certainly fortunate that 
our research grant was not up for renewal for at least a few months.

The strength of the experimental system with C. elegans was that virtually 
any biochemical sludge could be concocted and injected into a worm, with 
a very rapid (and in most cases quite specific) assay at the end for targeted 
genetic modulation. This made it possible to test somewhat far-fetched hy-
potheses (like the involvement of dsRNA) without spending years or “break-
ing the bank”. A second ingredient in testing the double stranded RNA
was someone to make the experiments happen. SiQun Xu, with extensive 
experience with both nucleic acid synthesis and isolation and with C. elegans
microinjection, was certainly the ideal person for this for many reasons. The
setup was particularly comfortable for me since SiQun could thus do the syn-
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theses and injections and I just needed to visit my microscope in the lab for 
an hour or two every day to look at the injected animals and their progeny.  

SiQun first repeated the kinds of RNA synthesis reactions and injections 
that others had done, using in this case our favorite gene, the C. elegans unc-
22 gene. This of course worked, generating a bunch or twitching worms as 
evidence for effective silencing of endogenous unc-22 activity and setting the 
stage to use this assay in characterizing the relationship between structure 
and interference of the injected RNA. The picture shown in Figure 3 shows 
a series of the initial RNA preparations resolved using an electrophoretic 

Figure 3.  Electrophoretic separation of RNA prepared by in vitro synthesis. Left lane, 
marker DNAs.   Remaining lanes show RNA populations with a strong band (bright signal) 
in the expected position for single stranded sense or antisense RNA (depending on the 
intended synthesis) and a number of unexpected bands (and a smear) in each lane that is 
visible due to overexposure of the photograph.  RNA is resolved on agarose gels and visual-
ized by fluorescence upon interaction with the included dye Ethidium Bromide.  Source: 
Original Gel Photograph, SiQun Xu and Andrew Fire, 1997.
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field and an agarose gel. What you can see is a very prominent band, a bright 
spot, where the RNA that we expected was. This photo was deliberately over-
exposed to reveal any other components that might be present, and one can 
certainly see additional (minor) bands and a general ”smear” in addition 
to the major (expected) bands. After a few preliminary explorations of the 
dsRNA hypothesis using this assay with these impure RNA preparations, I was 
somewhat encouraged but still be no means convinced. It was clear that a 
cleaner preparation of starting material was needed. To achieve this, SiQun
cut out the major bands from this gel, extracted the RNA and injected the 
purified sense or antisense RNAs into worms. This produced a result, albeit 
negative: almost all of the activity was lost by purification of single strands, 
suggesting that the sense and antisense weren’t the material that was causing 
the interference.  

SiQun’s purified strands also provided a better starting point for testing 
the dsRNA hypothesis, since the two nearly-inactive strands could be mixed 

Figure 4.  Quantitative assays for silencing of unc-22. Preparations of RNA similar to those in 
Figure 3 were enriched in the expected (sense or antisense) species by excising the major 
bands from agarose gels and extraction of RNA.  Some unwanted dsRNA may persist in 
these samples but in general at a greatly reduced level when compared to samples not sub-
ject to purification.  Individual sections of the graph show biological responses following 
injection of differing concentrations of single stranded and double stranded RNAs as dia-
grammed below (more highly affected animals are shown with a more intense red color).  
[Source: Reference 40 Supplement; see reference also for additional details].
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in a test tube to produce a well defined double stranded product. SiQun’s 
injection of double stranded unc-22 RNA formed in this way produced a 
remarkable result, with all of the resulting animals twitching strongly. To see 
how potent the effect was, SiQun injected smaller and smaller amounts of 
the double stranded material (Figure 4). The resulting animals showed an 
interference effect even after substantial dilution. When we finally did the 
calculation of how much material was being injected, we realized that we 
were seeing effects down to a few molecules of the double stranded RNA per 
cell. This was remarkable in that we knew from some previous work that we 
and Don Moerman and others had done that the target unc-22 mRNA was 
much more abundant.

As with any uncharted phenomenon, the first job of the scientist is to 
look for explanations based on known processes. The summer of 1997 was a 
busy one for phone lines, email connections, and delivery services between 
Baltimore and Worcester, with numerous collaborative experiments with 
Craig and SiQun now joined by Steve Kostas and Mary Montgomery. In ad-
dition to the characterization of the specificity/generality/character of the 
effect on target genes, a major goal was to definitively ask whether double 
stranded RNA in the interfering sequence was directly responsible for the ob-
served effects. An alternative explanation was still quite tenable: that double 
stranded RNA produced a non-specific response (either local or global) that 
potentiated the activity of small amounts of antisense. Settling this issue took 
a bit of molecular artistry to pursue. The most satisfying were a set of assays 
where we could look at gene-specific interference by complex RNA mol-
ecules that contained single stranded RNA matching one gene and double 
stranded RNA matching a second gene. All of these experiments pointed 
clearly to induction of specific interference by regions of double stranded 
RNA, and by the end of the summer we were all felt that a paper could be 
submitted definitively describing the ability of dsRNA to trigger a gene-spe-
cific and systemic silencing process [40].

dsRNA-TRIGGERED SILENCING PROCESSES AND THEIR ROLES: 
LESSONS FROM WORMS, PLANTS, FLIES, FUNGI, AND OTHER
SUNDRY BEASTS

But of course we still did not know what was actually going on, in particu-
lar what was actually happening to the expression of the target gene. Mary 
Montgomery was certainly in an excellent position to pursue this question, 
having spent several years working around the apparent reluctance of C.
elegans to translate injected RNA. The idea of an RNA injection experiment 
with a dramatic consequence (albeit strange and unexpected) was certainly 
enticing, so she took up the question of what happens to gene expression 
in the presence of injected double stranded RNA. At the time, one could 
imagine the interference affecting any step of gene expression or cellular 
homeostasis. Mary had observed that target genes lost their ability to accu-
mulate mRNA in the cytoplasm [40]. Extending this analysis, she was able 
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to demonstrate that RNAi was accompanied by destabilization of the target 
mRNA in the nuclei and cytoplasms of infected cells [41]. In some ways we 
were lucky be working on one of the simpler dsRNA response systems; cur-
rent knowledge of RNA-modulated gene expression has led to the realization 
that virtually every activity of genes can be affected by modulatory RNAs (rep-
lication, DNA structure and sequence, chromatin structure, transcription, 
processing, localization, ability to engage the translation machinery, and 
translational progression [e.g., 42–48]). Mary’s experiments also provided a 
remarkably graphic description of the effectiveness of RNA interference in 
C. elegans. Figure 5 shows an example of this, with a test gene examined with 
and without interference at the level of messenger RNA abundance. In the 
case of a control sample, the messenger RNA for this gene is highly abundant 
and readily detected by the color reaction derived from a procedure called 
in situ hybridization [49]. After interfering with the test gene by injecting the 
corresponding dsRNA the messenger RNA was essentially undetectable.  

The hypothesis that came from Mary’s experiments was that the double 
stranded RNA produced a condition where the target transcript was pro-
duced but was very unstable. Restated, this postulates a sequence-specific 
RNA degradation system that could be triggered by dsRNA. An old TV show 
called “the twilight zone” was based on the idea that the universe contains 
many phenomena that go beyond our capacity to understand. As of early 
1998, the data we’d accumulated was certainly consistent with the hypothesis 
that we were at least temporarily in the “twilight zone”.  

Accentuating this sense of unexplainable phenomena was a series of tests 
on the spatial requirements for dsRNA administration. These observations 
had a very rational starting point. When Su Guo did her original RNA injec-
tions at Cornell, she had intended to test for a biological effect of the in-
jected material in the gonad. So she injected the gonad and indeed an effect 

Figure 5. Injection of dsRNA results in disappearance of the targeted message. This experi-
ment (from Mary Montgomery [40]) shows embryos of C. elegans with and without dsRNA 
injected corresponding to the mex-3 gene [142].  In control samples a strong signal is 
observed on in situ hybridization [AA] (intense blue stain, left panel), indicating a high 
level of mex-3 transcript throughout the four-cell embryo.  Following dsRNA injection, the 
mex-3 transcripts are not detected (Center Panel).  
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was seen there [34]. The science/life-lesson that one can draw from this is “if 
you can do the experiment the way that seems most likely to be effective, do 
it just that way”.  

A subsequent observation from Sam Driver and Craig Mello, yields the 
lesson “if you can’t do the experiment the way that seems most likely to be 
effective, still do it”. In 1996 Sam was a beginning graduate student in Craig’s 
lab at the University of Massachusetts. He was just starting out with injection 
and so putting the needle into the correct tissue was problematic. Sam and 
Craig realized that despite the improperly placed needles, the injections 
were still producing extremely efficient interference. When they then delib-
erately injected into the “wrong” place (the body cavity), they still observed a 
strong biological effect. Later, Craig and SiQun Xu each extended this set of 
observations to an extensive list of tissues where dsRNA injection produced 
a systemic effect.  

Finally, we have a third lesson, this time derived from experiments initiated 
by Lisa Timmons, then a postdoc in my lab at Carnegie and now a faculty 
member at Kansas University. The lesson here, if you’re a postdoc or perhaps 
a graduate student, is to do experiments that your advisor would never con-

Figure 6. RNA delivered outside of a cell can produce a potent interference effect. Above, 
schematic diagrams of RNA delivery experiments from Su Guo and Ken Kemphues [34], 
Sam Driver and Craig Mello [40], and Lisa Timmons [53]. Below, examples of feeding-
based RNAi. Both animals are from a C. elegans strain where generalized somatic expres-
sion of a green fluorescent reporter is readily observed.  The animal at the right is fed on 
bacteria expressing dsRNA corresponding to the gfp coding region.  The animal on the 
left is fed on bacteria not expressing this construct.  Note the dsRNA-dependent loss of gfp 
activity in this example in all visible cells except those of the nervous system.

Levels of (im)precision in RNA delivery
S. Guo (Cornell): RNA into gonad  --> gonadal affect
S. Driver (UMass): RNA into body cavity --> gonadal affect
L. Timmons (Carnegie): Feed [dsRNA+ bacteria] to worms
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done or suggest. Lisa engineered E. coli, which is a bacterium that is the food 
source for C. elegans, to produce double stranded RNA. When she fed this 
genetically modified food to the worm, she saw a gene-specific interference 
effect. Figure 6 shows a case where she had engineered the bacteria to make 
double stranded RNA corresponding to the fluorescent reporter GFP (a won-
derful tool for following gene expression and cell patterns during develop-
ment) [50–52]. Starting with a worm strain that produces GFP in essentially 
all somatic cells, Lisa found that the ingested RNA could silence gene expres-
sion throughout the animal [53]. (The picture tells another interesting story, 
which is that there is considerable resistance to RNA interference in nerves 
of the animal. Although we have yet to understand the basis or reason for 
this, the wholesale alteration in the efficacy of the pathway in different tissues 
provides additional evidence for a very deliberate biological process.) Hiroaki 
Tabara, a postdoctoral fellow working with Craig at the time, went even be-
yond the “feeding” experiment, showing that simply soaking worms in double 
stranded RNA could produce an interference effect [54]. These experiments 
were particularly surprising given our expectations that cell membranes would 
block all but the smallest diffusible molecules from moving between cells. We 
knew that there was little or no diffusion of DNA. A theme in macromolecular 
transport of large charged molecules has been that the cell transports only 
things that might be useful, with those transport mechanisms very specific and 
well controlled. I certainly had no idea of why the worm would be transport-
ing dsRNA-derived signals in a facilitated manner.  

So now we had every reason to think we were in “the twilight zone”.  
Despite this, we were certainly pleased at our accomplishments in contribut-
ing to the development tools for manipulating gene expression in C. elegans.  

We now step through a doorway from the limited world of our favorite 
model organism to the much richer real world inhabited by species too 
numerous to count. This transition is accompanied by the recognition that 
discoveries that we may initially view as our technical “accomplishments” 
are invariably a reflection of underlying processes that are a natural part of 
sustaining life.

Soon after the initial description of dsRNA-triggered silencing in C.
elegans, several descriptions of similar processes appeared for other groups of 
organisms. These initially included observations from Drosophila (a fruit fly), 
Trypanosomes (single cell parasites), and plant systems [55–58], with many 
other organisms rapidly joining the list. Mammals were conspicuously absent 
from the initial list of organisms generally amenable to this type of manipula-
tion. The exclusion of mammals from the list of easily manipulated species 
was not a surprise: the non-specific responses to dsRNA that were originally 
discovered by Hilleman and colleagues [14] were certainly sufficient to con-
found any analysis of specific genetic interference. Nonetheless, early efforts 
in this area provided both an indication of the potential existence of specific 
dsRNA responses in certain specialized mammalian cell systems (e.g. oocyte 
and ovary cells [59–61]) and of the predominance of the non-specific re-
sponse in most others [e.g. 62].
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In addition to establishing a broader biological occurrence of dsRNA-trig-
gered genetic interference, the demonstration of dsRNA-triggered silencing 
in plants and fungi illuminated the process by connecting our rather frag-
mentary observations from C. elegans with a broad gene silencing literature.  
Indeed, papers starting a decade earlier from fungal and plant systems had 
been the first to describe sequence-specific effects of foreign DNA transgenes 
on the corresponding endogenous genes [63–67; also see ref. 68]. Intensively
creative work had allowed workers in both plant and fungal fields to track 
down the sequence-specific foreign DNA reactions as a complex set of re-
sponses that could independently attack the target gene’s chromatin or RNA
[e.g., 46,69–71]. The distinctive spatial patterns of silencing for endogenous 
genes in plants [65,66] had been one of many features that had drawn a 
small cadre of highly innovative investigators to study this question for its 
own sake. Demonstrations of a systemic signal in the plant silencing [71,72] 
were particularly striking and certainly led to a clear recognition of potential 
similarities between the phenomena that had been observed in C. elegans and 
gene silencing in plants.

At this point, it is worth pointing out the substantial advantages of study-
ing gene silencing (or any other important phenomenon) in more than one 
model system. The advantages of studying silencing in C. elegans turned out 
to be the flexibility of designing and making arbitrary RNA structures in a 
test tube and delivering them easily (by microinjection) into a rapid assay 
system (the nematode). This had circumvented many of the challenges faced 
by researchers working in plant systems, where such capabilities were not 
straightforward and complex issues of transgene structure and transcription 
confounded initial attempts to definitively assign a specific RNA structure as 
the trigger for the response. On the other side of the balance, plant systems 
offered a remarkable means to investigate the biological role of the interfer-
ence response. Starting with the earliest recognitions of transgene-derived 
viral resistance [73] and observations that viral RNAs could be both triggers 
and targets for the silencing [46,74,75], it was rapidly clear that the silen-
cing system might serve in the natural protection of plants from “unwanted 
information” in the form of viral pathogens. Definitive demonstration of this 
point came from a number of analyses of virus/host interaction.

To be a successful, one would expect a proposed antiviral system to effec-
tively block pathogenesis of at least a subset of viruses that might otherwise 
menace the organism. Since it is well known that viruses still succeed in the 
world (much to our dismay), there must also be ways in which the virus can 
counteract any cellular defense mechanisms. A critical point in defining 
the role of RNA-triggered silencing process was the recognition that many 
successful plant RNA viruses produce protein components dedicated to 
the inactivation of the silencing mechanism [e.g., 76–79]. Deliberate sup-
pression of host RNA-triggered silencing responses allows viral infectivity 
in at least a subset of plants for any given virus. The balance between the 
silencing mechanism and viral attempts to subvert it forms the basis for an 
ancient “arms race” between virus and plant. The character of this arms race 



212

was further evidenced in these studies by the ability to generate attenuated 
virus (by removing the anti-silencing function) and hyper-susceptible plants 
(by expressing a relevant viral anti-silencing protein or interfering with the 
endogenous RNAi machinery).  

The emerging recognition that the transgene response mechanisms in 
plants were at least in part an antiviral response had raised the compelling 
question of how viral activity could be specifically recognized by a silencing 
apparatus. A rather remarkable proposal to explain this was put forth by 
Ratcliff, Harrison, and Baulcombe in mid 1997 [80], in a paper that arrived 
at Carnegie just as we had scored our first assays to test for the ability of 
dsRNA to trigger gene silencing in C. elegans. Baulcombe and colleagues had 
reasoned that unique features of viral replication intermediates might lead 
to improved transgene-based triggers for gene silencing, stating “It may be 
possible to increase the incidence of gene silencing by ensuring that trans-
gene transcripts have features, such as double-strandedness, that resemble 
replicative forms of viral RNA” [80]. Combined with experiments suggesting 
an association between silencing effectiveness and certain secondary struc-
tures in the transgene and transcript [68,82], these proposals would almost 
certainly have inspired similar experiments to ours. The confluence of the 
two approaches, as always in science, proved to be the most powerful driver 
of further work, as the combination of chemical definition of the trigger in 
C. elegans and a biological explanation of its efficacy in plants led to a rapid 
explosion of scientific effort in the area.

TOWARDS A REACTION MECHANISM: EFFORTS TO PEER INSIDE THE
BLACK BOX

Despite the great enthusiasm from those of working with plant, worm, and 
insect model systems, the mechanism by which dsRNA could silence gene 
expression was still an unknown. Seminar slides made at the time would 
show dsRNA and the mRNA target somehow entering a large and mysterious 
“black box”, followed by degradation of the target RNA and some unknown 
fate for the effector dsRNA. This “black box” explanation limited our grasp 
of the RNAi system, both for understanding the underlying biology and for 
applying RNAi to organisms (like humans) where the response to dsRNA was 
more intricate than for “simple” invertebrates. The key questions (both in 
terms of molecular mechanism and in terms of potential roles of RNA-trig-
gered gene silencing as an immune process) revolved around a need to un-
derstand the structure of the molecular assembly responsible for recognition 
of the target message by the effector RNA. Like antibody-antigen complexes 
in classic immunity, the identification of a “fundamental unit of recognition” 
seemed a key step in elucidating RNAi-based immunity in cells.

Some of this work could be done using C. elegans, and I will describe this 
in a bit of additional detail. Keep in mind (and I will describe at the end of 
this section) that much of the ongoing work was at this point being pursued 
in parallel in different systems by a plethora of research groups each with 
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their own angle on a specific model organism and interference assay. RNAi 
is a three strand process [Figure 7] involving a sense strand and an antisense 
strand in the trigger and a target transcript in the cell. We could manipulate 
the trigger strands extensively in an attempt to determine exactly what was 
required for the induction of specific interference. This analysis gave several 
specific results [83]. First, we found a different set of chemical requirements 
for the sense and the antisense strands in inducing interference. Second, 
there was a rather stringent requirement for sequence matching between 
the two trigger strands and with the target strand. Third, although there was 
a decrease in effectiveness as we used shorter and shorter triggers, we could 
obtain a response in C. elegans with triggers whose length was in the 20s of 
nucleotides. Combined with complementary structure-function experiments 
carried out at a similar time in other systems [e.g., 84] these data evidenced 
a very concerted chemical precision of effector RNA recognition and action 
in the (at that point still very unknown) black box.

A second area in which C. elegans could readily contribute to understand-
ing of RNA-triggered silencing revolves around a genetic screen. The screen, 
originally executed by Hiroaki Tabara and Craig Mello [85], involved an 
important modification of Lisa Timmons’ feeding experiment. Hiroaki 
engin eered E. coli to produce a specific dsRNA, but in this case the dsRNA 
was targeted toward an essential gene in C. elegans (a gene called pos-1 that 

Figure 7. Conclusions from experiments where RNA interference was assays after structural 
and chemical modifications had been made in injected RNAs. For details see text and 
Parrish et al., 2000 [83].

Conclusions from Trigger Analysis
• Highly matched duplex in a region of target homology is required

• dsRNAs as short as ~25nt have can trigger specific RNAi responses

• '+' and '-' trigger strands contribute differentially to RNAi

The three strand problem
Incoming Sense
Incoming Antisense

Target mRNA
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Hiroaki had characterized during his graduate work with Yuji Kohara [86]).  
Without the activity of this gene, worm populations could not survive, so that 
the engineered bacteria are an exceedingly poor food source for C. elegans.  
Selecting the extremely rare animals that can grow on that food source was 
then possible [Figure 8] and was facilitated by working with populations that 
had been chemically treated several generations earlier to produce muta-
tions. Among the animals that grew on this food source were a subset that 
lacked the responses to all the kinds of foreign dsRNA that we had used for 
interference. For at least two genes, Hiroaki found that a complete loss of 
function resulted in a worm that looked normal (or nearly normal) in the 
laboratory, but which was unable to respond to our dsRNA challenges. The 
existence of these mutations provided further (and very compelling) evi-
dence that RNAi was a concerted process. If the ability of dsRNA to silence 
genes had been a simple reflection, for instance, of the physical chemistry of 
dsRNA, then we would have been unlikely to find mutations that abrogated 
this activity. That C. elegans could survive without the process and grow nor-
mally (at least in the artificially pristine conditions of an isolated Petri plate) 
was a demonstration that the organism relied on a dedicated mechanism to 
facilitate dsRNA-triggered silencing. Through considerable effort, mostly 
from Hiroaki and Craig, it was possible in a relatively short time to identify 

Figure 8.  Identification of mutations that eliminate responses to foreign RNA but are 
compatible with life for the worm. After mutagenesis with the chemical mutagen Ethyl 
Methane Sulfonate [26], animals were grown for several generations and then transferred 
to an E. coli food source expressing dsRNA corresponding to the C. elegans pos-1 gene.  
Embryogenesis is arrested in the vast majority of the resulting population and only mutants 
such as those eliminating RNAi can continue growing as a population.  For details see text 
and Tabara et al., 1999 [85].

A mutational Screen for trans-acting factors involved in RNAi

See: Tabara, H., Sarkissian, M., Kelly, W., Fleenor, J., Grishok, A., Timmons, L., Fire, A., and
Mello, C. (1999) "The rde-1 gene, RNA interference, and transposon silencing in C. elegans."
Cell 99:123-132
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pos-1
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the genes which had been mutated in the resistant strains. The identities of 
the corresponding gene were both illuminating and frustrating.

rde-4 encoded a protein with a structure clearly suggestive of an ability to 
bind to dsRNA [87]; although certainly reassuring, this identity by itself (and 
the expected ability of the protein to bind dsRNA non-specifically [88]) was 
not sufficient to illuminate the underlying mechanism.

rde-1 encoded a protein from a large family (now called the “Argonaute”
family) for which there was at the time only a trace of biochemical data.  
Proteins from related families had been shown to play key developmental 
roles [89–91]. There was some indication of an RNA interaction [92], but 
there was little biochemical information beyond this. As it became clear that 
other genetic model organisms shared a dsRNA response mechanism, it like-
wise became clear (from genetics in plants, fungi, and flies [e.g., 93–95]) that 
at least a subset, like C. elegans, could survive without this mechanism. The
ability of diverse organisms to encode proteins of similar character to those 
involved in C. elegans gene silencing, and the eventual identification of ho-
mologous genes as functionally required for RNAi in distinct model systems 
[e.g., 95–97] supported the argument that we were all looking at a similar 
and conserved biological process. Beyond the standard “model” organisms, 
the existence of homologous coding regions in mammals supported the 
argument that mammals might indeed also have similar responses if it were 
possible at some point to tease away the non-specific response.

Despite these hopeful suggestions, the RNA structure-function and genetic 
analysis had not put us in a position either to propose a unifying mechanism 
for RNAi or to design experiments to test for the efficacy of the system in 
mammals. Even in hindsight, going forward in either direction would have 
been complicated; in particular, the shortest RNAs that we had initially tested 
for interference in C. elegans [83] were too long to have fit into the what we 
now know as the RISC complex [see below], and were not of the proper struc-
ture to provide side-effect-free gene silencing response in mammalian cells.  

Getting into the black box required a series of keen biochemical observa-
tions. I won’t go into these observations in too much detail here, as the small 
RNAs that mediate exogenous and endogenous genetic control in diverse 
biological systems are certainly worthy of their own narrative. Still a summary 
of the small interfering RNA story serves to provide some context for how we 
now think about RNAi.

The first indication that a small RNA population might be key to the RNAi
process came from experiments in plant systems that were carried out by 
Andrew Hamilton and David Baulcombe [98]. Studying plants undergoing 
experimental gene silencing, they found a population with a narrow size 
range of 21–25 whose presence was closely associated with the silencing.  
Critical to this analysis was the decision to look for RNAs in a small size range 
and the rather impressive chemical trick of actually detecting these RNAs.

With small RNAs identified as potential additional characters in the story, 
biochemical research gained considerable momentum. To know anything 
about what was happening in the black box required an ability to study the 
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reaction not within the complex environment of living cells, but in some type 
of isolated system. Two groups initially took up this challenge: one at MIT
(Phil Zamore, Tom Tuschl, Ruth Lehman, David Bartel, and Phil Sharp)
and one at Cold Spring Harbor (Scott Hammond, Emily Bernstein, David
Beach, and Greg Hannon). Each succeeded independently (using very dif-
ferent approaches) in recapitulating the RNAi reaction in soluble extracts of 
Drosophila cells [99,100]. As the analysis of the biochemical reaction proceed-
ed from these groups and others, it became clear that the small RNAs that 
Hamilton and Baulcombe had observed in plants were indeed central to the 
interference reaction. The reaction was, at least conceptually, divided into 
three phases, the cleavage of a long dsRNA trigger into shorter dsRNA seg-
ments, the loading of chosen single stranded products of this cleavage into a 
tight ribonucleoprotein complex, and the scanning of potential target RNAs
in the cell by this complex [99–102]. The Hannon lab, perhaps while watch-
ing late-night television, coined catchy (and now standard) names for the two 
enzyme complexes central to the reaction: Dicer (which cleaves the dsRNA
into short segments) and Slicer (which assembles around a single strand of 
processed effector RNA and goes on to cleave target messages [somewhat 
equivalent to the term RISC]).

The pathway that resulted from the confluence of biochemical and ge-
netic analysis is shown graphically in Figure 9. The reaction initiates with 
cleavage of the large dsRNA fragment into small double stranded fragments.   
Selected strands of single stranded RNA then get incorporated into the 
“slicer” complex, which then searches around the cell looking for target 
RNAs in a manner that is not yet understood. When those target RNAs are 
found, they are cleaved by an enzyme activity which is intrinsic in the RISC,
leading eventually to target degradation. Although this mechanism certainly 
didn’t explain all of the phenomenology, it has proven remarkably general as 
a working model on which to base further study of RNAi.

Among the consequences of this model were some predictions of how 
to achieve specific RNAi in human cells. A key step in this was the detailed 
chemical description by Elbashir, Lendeckel, and Tuschl of the first small 
RNA intermediate in the silencing process [103]. This mostly-double-
stranded small RNA population formed by Dicer had a characteristic set of 
termini with two slightly overhanging bases on each strand and the negatively 
charged phosphate group on the non-overhanging end. Recall that long 
double stranded RNA induced a nonspecific effect which prevented us from 
looking for any specific effects. Determination of the intermediate structure 
sparked an informed guess that RNAs of this structure, known from earlier 
studies to be too short to induce a strong non-specific response [e.g., 104], 
might produce a much more specific response. This was indeed the case, 
with reports appearing first from Elbashir, Tuschl and colleagues [105], and 
then in rapid succession from other groups including our colleagues Natasha 
Caplen and Richard Morgan at NIH [106]. The relatively straightforward na-
ture of these assays led quickly to adoption of siRNA-mediated interference 
as a preferred method for certain analyses of gene function in mammals.
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Figure 9.  A basic model for the conserved central core mechanism in RNAi. Based on bio-
chemical and genetic experiments as described in the text, double stranded RNA enters 
the cell, is set upon by a complex of a dsRNA-binding protein (RDE4 for C. elegans) and a 
dsRNA-specific nuclease (Dicer).  Following dicing of the dsRNA into short double strand-
ed segments, individual small RNAs are loaded into a second protein complex including a 
protein member of the Argonaute family (to assemble an RNA-Induced-Silencing Complex, 
also called a ‘RISC’ complex).  These can then survey the existing RNA population in the 
cell for matched targets, which are then subject to degradation.
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RNA INTERFERENCE AS IMMUNITY: SOME ANALOGIES AND QUES-
TIONS

The genetic and biochemical elucidation of RNAi also raised some interest-
ing questions of analogy between the classic immune response (involving 
antibodies and lymphocytes) and RNAi (Figure 10). First will come the 
question of specificity. For the classic immune system, specificity is enforced 
by a series of interactions between recognition proteins (Antibodies and T-
cell receptors) and their potential partners (including foreign proteins and 
other molecules). The flexibility of specific protein recognition repertoire 
thus serves as major basis for the classic immune response. For intracellular 
responses to foreign RNA, it appears that nucleic acid complementarity 
plays a similar role. Hybridization of short effector RNAs to a target message 
provides both rapid and specific recognition on which to base an immune 
response. The critical length of the duplex, in the 15–25 nt range, turns out 
from first principles to be optimal for achieving specific recognition without 
burdening the system by non-specific hybridization that would be more com-
mon with longer effector molecules (a point made many years ago by Tom
Cech, in giving an introductory lecture in ~1991 to a group of scientists who 
hoped to use antisense technology for therapeutic goals).

A second challenge for the RNA interference pathway is how to ensure 
that no self-attack occurs that might harm the host cell; essentially there is 
a need to be sure that none of the cell’s own essential genes are targeted by 
the RNAi mechanism. A part of this assurance relies on the use of dsRNA

Figure 10.  Points of comparison, analogy, and contrast between traditional immunity (T-
cell/Antibody mediated responses) and proposed RNAi-based defense mechanisms.
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as a trigger. Our cells don’t normally use double stranded RNA to express 
our genes, they use single stranded RNA. Of course there may be cases 
where double stranded RNA is part of modulating gene expression, but for 
the most part, cells can avoid it if they need to. The interesting part of this 
avoidance is that it is evolutionary in nature. We presume that once the RNAi
mechanism is in place, cells would evolve very diligently to avoid producing 
dsRNA in amounts that would shut off important endogenous genes. Any
deviation from this could decrease the fitness of the organism, so over evo-
lutionary time we expect a very effective avoidance of self-detrimental RNAi.
This long-term mechanism differs from classic immunity in that the classic 
immune response avoids self-inflicted damage by a surveillance mechanism 
that (when everything is working properly) removes self-directed recognition 
elements continuously during the life of an organism. The consequence of 
this difference is that for RNA-based immunity it may be easier in real time to 
“trick” the system into targeting an endogenous component, something that 
could be an encouragement to the development of therapeutic strategies 
involving RNAi.

Breaking of the initial dsRNA trigger into small fragments reveals a third 
immune-related logic to the process. Certainly the dicing of the trigger serves 
to increase the number of independent molecules (and specificities) in the 
response, potentially providing a more effective trigger::target ratio for sur-
veillance. In addition to this, the focus on short segments allows the system to 
respond to viruses that have mutated elsewhere in the genome but kept one 
or more essential sequences of greater than 20 bases. Finally, there is a ben-
efit to breaking the infectivity of the effector molecules before disseminating 
them around the organism. I usually describe this by analogy to antiviral soft-
ware: If you are worried about viruses infecting your computer, you will buy 
an antiviral software package that carries (i) a database of information about 
viruses (computer viruses in that case), (ii) a series of routines to establish 
which files are infected, and (iii) a series of remedies which either correct 
or delete the infected filed. The virus database that is part of this package 
doesn’t need to have complete sequences for each virus, and indeed it would 
be a mistake for the antiviral software company to distribute such a data-
base, as some of the components from the database might end up initiating 
infections. By taking from each virus only a set of relatively short signature 
sequences, it becomes possible to distribute identifying information without 
distributing the potential for infectivity. Breaking the double stranded RNA
into 21–25 nt segments may serve the same role in cellular responses to un-
wanted RNA.

Dissemination of immune effector information is another feature of both 
classical and RNA-based immune mechanisms. For classical immunity this 
involves hitch-hiking with the blood circulation that permeates the body, as 
well as some very highly choreographed lymphocyte migration processes. For 
RNA-based immunity, the mechanisms of information dissemination are still 
being unveiled. Results demonstrating a concerted protein-based machinery 
that mediates dissemination of the RNAi response in C. elegans [e.g., 107] are 
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certainly exciting; understanding this machinery will be of great interest in 
designing and planning applications of RNAi.

RNAi, like any cellular mechanism, requires use of energy and metabolic 
resources. Balancing those resources with the current needs of the organism, 
and focusing the resources available for this purpose on the most pressing 
dangers, are essential for the system to fulfill its worth. For classic immunity, 
there are mechanisms that manage the population of effector molecules 
involved in surveillance (T and B cell repertoire), both by subtracting out 
specificities that are not engaging targets and by amplifying specificities that 
engage their targets. One expects, perhaps, to find similar overall manage-
ment of specificities that guide the RNAi machinery. An enticing example of 
such management comes from the involvement of RNA-directed RNA poly-
merases in the silencing process for plants, worms, and some single-celled 
organisms (See Figure 11). First characterized in plant systems in the 1970s, 
cellular enzymes that can copy RNA to RNA [e.g., 108] had little place in 
the central dogma of molecular biology (DNA makes RNA makes Protein).  
Considerable doubt regarding the source of such enzymes inhibited research 
until they were purified and shown to be encoded by the cellular genome 
[109–110] and subsequently shown to play key roles in RNAi in Neurospora,
worms, and plants [111–115]. One of the striking aspects of RdRP-based trig-
ger amplification that has been described is that amplification only occurs 
when a target has been engaged. The consequences of this guidance mecha-
nism [116–122] are (i) that amplification of the effector signal is limited to 
cases in which there is a real target, and (ii) that the spectrum of RNA silen-
cing triggers can spread outside of the original area to encompass a broader 
segment of a target that has been recognized as foreign/unwanted. The
RdRP-based amplification mechanism thus provides an example of honing 
the immune activity of the RNAi system to “clear and present” dangers.

The immune system analogy to RNA-based surveillance brings up a final 
question of how the system can remember prior challenges to provide opti-
mal immunity. For the majority of RNA interference experiments done in C.
elegans, the visible effect disappears after a generation or so [e.g., 40]. This is 
not always the case however, and there are instances in which gene-specific 
effects of RNAi can last for numerous generations [e.g., 123–124]. Similar
long term effects have been studied in plant systems [e.g., 125]. Such effects 
would not be expected from the simple model in Figure 9. Instead, a current 
model (see Figure 12) is that the initial interaction between effector and tar-
get sequences might have a combination of short term consequences (e.g. in-
hibition of translation and degradation of the target mRNA), medium term 
consequences (such as production of additional small RNA effectors comple-
mentary to the target) and long term consequences (including changes in 
the physical conformation [chromatin context; 46,47] of the cellular DNA
that encodes the target transcript). This variety of responses to a similar 
initial interaction event is in many ways analogous to the classic immune 
system, where an initial target recognition interaction can lead to a plethora 
of downstream consequences. In each case, the initial interaction complexes 
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(RISC-mediated nucleic acid hybridization in the case or RNAi, antibody:
antigen or T-Cell-Receptor::antigen in the case of the classic immune system) 
appear capable of recruiting a diversity of suppressive mechanisms based on 
the circumstances, with the duration of any given response (and subsequent 
memory) depending on a balance between longer and shorter term conse-
quences.

Figure 11. A model for amplified RNA interference in C. elegans somatic tissue. Based on 
discussion and references in the text, long dsRNA introduced into cells is initially attacked 
by a complex of a nuclease (Dicer) and a recognition component (RDE4) that “dice” 
the long dsRNA into short fragments.  Loading of these fragments into a second protein 
complex results in a silencing complex that can scan the message population of the cell 
for matching sequences.  These are then subject to two different consequences: cleavage 
(which should inactivate the message) and/or synthesis of short complementary RNAs
[116–122]. The short complementary RNAs can join their own effector complexes (pos-
sibly including a different Argonaute family member, see [143]), resulting in a target-de-
pendent amplification of the foreign dsRNA response.  See text and references for further 
discussion of this proposed mechanism.
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GOING FORWARD: PUZZLES AND CHALLENGES

RNAi is an extremely active field of current investigation and will certainly 
remain so for some time. Many of the central questions relate to basic mecha-
nisms; many others relate to potential applications. From the perspective of 
understanding RNAi as a potential immune-type surveillance mechanism, 
several questions currently occupy the forefront (I have cobbled together a 
list in Figure 13). One question concerns possible roles for RNAi as an antivi-
ral response outside of the plant kingdom. Several recent studies in inverte-
brate animals (worms and flies) rather clearly show the capability of RNAi to 
function in surveillance against viruses (and other selfish information such as 
transposons) in simple animals [e.g., 85,126–128]. That the issue has not yet 
been resolved for higher animals (mammals) could conceivably reflect the 
complexity of teasing apart specific and non-specific responses of mammals 

Figure 12. A model for multi-modal gene silencing as a result of siRNA effector recognition 
of RNA transcripts. A generic Argonaute:siRNA:target ternary complex is shown at the 
top, giving rise in principal to several different complexes in which silencing factors have 
been recruited. Left, top, cleavage of target transcript by Argonaute-like component or a 
recruited ally. Left, middle, recruitment of an RNA-directed RNA polymerase that might 
synthesize complementary RNA either primed by the initial siRNA or (as appears to be the 
case in C. elegans) with de-novo initiation. Bottom, a rough schematic diagram of tethered
chromatin modification components acting on nearby nucleosomes and/or other DNA-
associated factors (drawn here as a silencing HMT-ase = “Histone methyltransferase” [see 
145] although numerous other epigenetic modifying activities could function equivalent-
ly). Note that this process would likely occur on a nascent RNA transcript still associated 
physically with the DNA template [144]. Right, recruitment of factor(s) that might block 
translation of the message [e.g., 48].
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to dsRNA. Alternatively, it is certainly conceivable at this point that the virus-
protective role of RNAi has been lost in mammals.

One exciting development over the last several years has been the appear-
ance in the literature of detailed structures of components parts of the RNA
interference machinery [e.g., 129,130]. These structures have, both individu-
ally and in aggregate, led to an understanding of aspects of the mechanism 
would have only been dreams about during the early phases of the analysis 
of the system. With the emerging structural wisdom come a large number 
of thermodynamic and kinetic questions. For the less technically inclined 
reader, these challenge us to understand the contributions of energy and 
equilibrium to the natural system and to add the dimension of time to the 
static pictures such as those in Figures 9 and 11. Already it is clear that kinetic 
competition between different potential effectors at each stage of the RNAi
mechanism is a key determinant of how the RNA-based surveillance system 
is used [e.g., 131,132]. Likewise, kinetic competition between the RNAi ma-
chinery and other protein: RNA interactions (RNA synthesis and processing 
machinery, RNA storage and turnover machinery, and the translation ma-
chinery) will undoubtedly determine the spectrum of RNAi events that can 
actually occur during the life of a cell [e.g., 133].

At the same time as detailed biochemical and structural studies are likely 
to illuminate the forefront of RNAi, there is still much to be learned from 
genetic analysis. The original screens of Tabara et al. [85] found just two 
C. elegans genes with the idealized property that they eliminated almost all 
RNA interference with little or no effect on the organism. Similarly, limit-
ed sets of comparable genes (although different individual components) 
were identified in the early genetic screens of plant and fungal systems 
[e.g., 93,94]. Vertebrate cells that lack the major Argonaute component 
involved in dsRNA-based surveillance are intriguingly alive (and capable of 
growth in a Petri dish) but incapable of forming a viable organism [134].  

Figure 13. Some open questions on RNAi and immunity.

Some open questions on RNAi and Immunity

Does RNAi in animals function as an anti-pathogen response?

What physiological factors modulate RNAi to allow maximal
response to pathogen RNAs?

Do small endogenous RNAs act as a layer of innate immunity?

Can RNAi be manipulated to provide protective immunization?

Are RNAi-related mechanisms responsible for a subset of the
gene silencing events that occur during tumorogenesis?
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Correspondingly, some mutants in other systems that may have superficially 
appeared specific to the dsRNA response also exhibit intriguing variations 
in growth and/or physiology even in the absence of known pathogenic chal-
lenges [e.g., 135,136]. In addition to these observations, several biological 
forces which were limiting the original genetic screens are now clear. In
some cases, the failure to recover mutants affecting a given stage in the pro-
cess reflected a degree of genomic redundancy, with several different gene 
products each sufficient (at least partially) to execute a single reaction step 
[e.g., 85]. Conversely, some RNAi components were not identified in the 
early screens due to their shared involvement in RNAi-related (but distinct) 
processes which use similar molecular machineries and which are essential 
for organismal viability. In addition to the well characterized micro RNA reg-
ulatory system [128,137], the portfolio of RNAi-related processes will almost 
certainly include surveillance and regulatory roles within cells which we have 
yet to understand [e.g., 128]. As the expanding toolkit for analyzing essential 
and redundant genes in genetic model systems is applied, we should be able 
to open more than a few doors toward illumination of both the natural roles 
of RNAi and of numerous yet-to-be-elucidated cellular regulatory and surveil-
lance functions.

RNA INTERFERENCE AS A TOOL IN MEDICINE?

A question that has generated considerable excitement beyond the research 
lab is whether effector dsRNAs might be used as a direct intervention to treat 
human disease. Indirect applications of RNAi in medicine have certainly 
jumped forward: RNAi takes its place among many different tools to under-
stand gene regulation, assign functions to individual genes, and facilitate the 
discovery of potential therapeutic targets in disease systems.  

Will direct administration of interfering RNA be a useful clinical tool? If a 
person has a virus infection, why not use double stranded RNA correspond-
ing to that viral sequence as a drug to treat the person? If a person has a tu-
mor, why not take a gene that’s essential for that tumor and administer dou-
ble stranded RNA corresponding to that gene to shut down growth of that 
tumor? If a person has a disease caused by an altered or out-of-control gene, 
why not try double stranded RNA corresponding to that gene as a potential 
therapeutic? There are many challenges and many conceivable benefits to 
this approach. There are scores of potential applications, all of which will 
require negotiating the thicket of delivery, safety, and efficacy in the complex 
circumstance of a genetically diverse target population and with the need to 
understand and anticipate host (and in some cases pathogen) responses to 
the specific dsRNA. Maybe the time frame in testing these approaches will 
be years, maybe tens of years, and maybe more. With all of the trepidation 
and caution that goes into such an enterprise, I still look forward to seeing 
research in this area progress as a future endeavor in both the public and the 
private sector.
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I expect that there will be additional areas (beyond the gene discovery 
and therapeutic RNAi applications discussed above) in which understand-
ing of RNA-triggered gene silencing will provide therapeutic opportunities 
and augment to our capacity to mitigate disease. Any potent and specific 
biological process (even if it is generally beneficial to the organism) comes 
with consequences to the organism if abnormalities in specificity or regula-
tion occur. Aberrations in genetic silencing (both positive and negative) 
are certainly a major component of many human diseases, including most 
prominently cancer. Intensive investigations of dysregulation in cancer and 
other disease have turned up cases of defects in virtually every known cellular 
regulatory pathway. Regulation by small RNAs has rapidly joined this group 
[e.g., 139,140], with currently available data likely accounting for only a small 
fraction of such effects. As the potential contributions of RNA-triggered ge-
netic silencing processes to both disease and the human response to disease 
continue to be characterized, it is conceivable that there will be clear cases in 
which manipulation of the RNAi machinery itself, either in a global manner 
or in a small subset of cells or effector functions, will become an attractive 
therapeutic strategy. As such situations arise, the availability of therapeutic 
interventions to manipulate aspects of the RNAi machinery such as small 
molecule drugs [e.g., 141] and biologically-based modulatory strategies [e.g., 
using viral anti-silencing components] will certainly provide worthy leads for 
potential treatment.

SCIENCE DOESN’T GROW ON TREES, EVEN IN SANTA CLARA
COUNTY...

I want to finish with a few thanks. I have been fortunate to be associated with 
a family, a group of friends, a set of co-workers, and a number of institutions 
for which scientific inquiry and humanity have been equally highly valued.  
This has made it a joy to do science.

Since this article focuses most directly on experiments from the 1990s 
on the structural trigger for RNAi, I want to first specifically acknowledge 
the members of my lab and some of our collaborators that were directly 
involved in this work. The crew in my lab that were involved most directly 
in this particular effort were SiQun Xu, Mary Montgomery, Steve Kostas, 
Lisa Timmons, Susan White-Harrison, Jamie Fleenor, and Susan Parrish.  
Collaborations with Craig Mello and his group, particularly Sam Driver and 
Hiroaki Tabara likewise drove of the effort in wonderful ways, as did collabo-
rations with Natasha Caplen and Rick Morgan at NIH, Farhad Imani at Johns 
Hopkins, and Titia Sijen, Femke Simmer, Karen Thijsen, and Ronald Plasterk 
at Utrecht. I hope you realize that even this rather substantial scientific con-
sortium was just a piece of a very large puzzle that involves also many other 
scientists and groups around the world.

Two institutions deserve particular attribution for any contributions from 
myself and my lab. The Carnegie Institution of Washington’s Department of 
Embryology is where we did our work on the structural characterization of 
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the trigger, and the National Institutes of Health (in addition to supporting 
all of our colleagues and collaborators) funded all of the work that has gone 
on in my lab on this question.

For anybody to make their way in the world, there need to be inputs and 
contributions... and a lot of influences. When I sat down to put a few names 
down of people that at one point or another have had a positive influence, 
Figure 14 emerged. I apologize in advance for any inadvertent omissions 
(and numerous spelling errors)... you know who you are.

Figure 14. A few of the people and groups that the author would like to acknowledge for 
their help, support, encouragement. The list is in computationally randomized order with 
a few omissions (apologies) and misspellings (apologies).

In randomized order: Lilly Lerner, Maria Esquela, Lynne Corboy, Yixian Zheng, Jenny Pang, Jim Manley, Robert Weinberg, Guy Rudin, Steven Siegel, Claire Craddock, John Hennessey, Andrew Godbey, Josh
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